找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 893|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈涛、张佳玮:水凝胶可编程化智能变形领域取得进展

[复制链接]

109

主题

127

帖子

175

积分

注册会员

Rank: 2

积分
175
跳转到指定楼层
楼主
发表于 2020-10-29 16:13:40 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
自然界中种类繁多的动植物不仅有着纷繁多变的形态,而且能根据外界环境的变化而改变自身的形态。水凝胶由于其软、湿特性,长期以来被认为是智能仿生的理想材料之一,并被用于软体机器人、组织工程及药物递送等诸多领域。目前,水凝胶驱动器实现智能变形的方式主要有形状记忆与驱动两种,形状记忆水凝胶需在外力的作用下变形,并在外界刺激下通过可逆作用的形成固定其临时形状;而驱动水凝胶则可在外界的刺激下自发产生形变。传统的水凝胶驱动器由于使用模板法制备,因此只能在外界的刺激下实现简单的弯曲形变。近年来科研人员利用光掩模板、图案化等一系列方法实现了水凝胶多维度的复杂变形,但是由于水凝胶的各向异性结构在制备时即被赋予,导致水凝胶驱动器的变形行为(变形程度)无法根据需要进行再次调整。因此实现水凝胶驱动器的可编程、多维度复杂变形对于水凝胶在软体机器人等领域的应用具有重大意义。
图1 双层水凝胶的形状记忆与驱动功能协同
  近年来,中国科学院宁波材料技术与工程研究所智能高分子材料课题组陈涛研究员与张佳玮研究员一直致力于智能变形水凝胶的研究(Adv. Funct. Mater. 2016, 26, 8670; Chem. Sci. 2016, 7, 6715; Chem. Soc. Rev. 2017, 46, 1284; Chem. Commun. 2018, 54, 1229; Adv. Funct. Mater. 2018, 28, 1704568; Adv. Sci. 2019, 6, 1801584; Angew. Chem. Int. Ed., 2019, 58,16243等)。近期,该团队成功结合水凝胶的形状记忆与驱动功能,在Small上发表题为“Actuating supramolecular shape memorized hydrogel toward programmable shape deformation”的研究论文。
  研究人员利用紫外光分步聚合的方法制备具有双层结构的水凝胶,首先通过光引发聚合构建具有形状记忆能力的海藻酸钠-聚丙烯酰胺(Alg-PAAm)水凝胶,随后在其顶部灌入N-异丙基丙烯酰胺(NIPAm)预聚液并再次光引发聚合,最终得到具有形状记忆与驱动功能的Alg-PAAm/PNIPAm双层水凝胶驱动器。
  传统的双层水凝胶由于其各向异性结构仅分布在垂直于凝胶的方向上,因而在外界刺激作用下只能产生简单的弯曲变形。研究人员结合水凝胶的形状记忆与驱动功能,通过Alg-PAAm水凝胶的形状记忆过程赋予了水凝胶多种可擦除的临时各向异性,而后通过PNIPAm水凝胶的温度响应驱动过程实现了可编程的多维度复杂形变。具体而言,例如首先将条状的凝胶通过外力变形为拐杖状,而后将其局部浸没在铁离子的溶液中以固定其临时形状,随后将凝胶置于60℃的热水中,伴随着PNIPAm水凝胶层的收缩,拐杖状双层凝胶会自发地变形成为音符状。当外界溶液温度降为15℃时,PNIPAm水凝胶层溶胀,双层凝胶还会回复到初始的拐杖状,最后使用乙二胺四乙酸(EDTA)浸泡该凝胶以除去凝胶中的金属络合作用,拐杖状凝胶将会回复到初始的条状,并可用于下一次的形状编程。除此之外,当条状凝胶被记忆成扭转状后,水凝胶还可从一维形状直接变形为三维螺旋状,并且只需简单改变扭转方向和扭转角度,水凝胶即可形成诸如左螺旋与右螺旋、以及不同螺旋程度等一系列形状。
  利用水凝胶形状记忆与驱动功能的结合,不仅适用于条状凝胶,也可以实现片状凝胶的可编程化变形。例如,研究人员将二维水凝胶薄片沿着Y轴的方向弯曲成圆筒状并在铁离子的溶液中将此形状固定,当温度上升水凝胶发生驱动时,由于圆筒状结构在Y轴方向上弯曲受阻,使得水凝胶只能沿着X轴方向释放应力,从而导致了圆筒状水凝胶沿着X轴展开成为平板状,此时Y轴方向的收缩力不再受到水凝胶三维结构的限制,从而实现了在Y轴方向收缩重新变为圆筒状。同样,若将水凝胶沿X轴弯曲记忆,水凝胶将先沿Y轴展开为平板再沿X轴收缩为圆筒。该过程表现出对水凝胶驱动方向的良好控制,并且通过有限元分析也印证了结果的有效性。最后受剪纸艺术的启发,研究人员利用激光切割机制备得到了具有剪纸图案的凝胶。通过外力将凝胶卷起并用铁离子固定其两端,水凝胶能保持良好的三维圆筒状结构,随后升高外界温度,中部凝胶发生收缩并自发形成三维的灯笼状。除此之外,也可将凝胶中部记忆成三维拱形结构,同样在升高外界温度后,端部水凝胶发生收缩也可形成三维的灯笼状,该过程通过合理的形状编程实现了水凝胶不同三维形状之间的转变。该工作成功结合了水凝胶超分子形状记忆与驱动功能,实现了水凝胶驱动器可编程、多维度的形状转变,为新型智能变形材料的制备与发展提供了新的思路。
  该工作得到了国家自然科学基金(51873223、52073295),中国国家重点研究开发计划(2018YFB1105100、2019YFC1606600、2019YFC1606603),中国科学院青年创新促进会(2017337、2019297)等项目的资助。

  (高分子与复合材料实验室 陆欢欢)
        文章来源:宁波材料所
       陈涛,博士,研究员,博士生导师。2006年毕业于浙江大学化学反应工程国家重点实验室,获得高分子化学与物理博士学位。先后于2006年到2007年在英国华威大学(University of Warwick)化学系及于2007年到2010年在美国杜克大学(Duke University)材料科学与工程系从事博士后研究;2010年到2012年,作为洪堡学者在德国德累斯顿工业大学(Technische Universität Dresden)化学系从事科研工作。加入中科院宁波材料所,组建智能高分子材料课题组。在Chemical Society Review, Progress Polymer Science, Advanced Materials, Advanced Functional Materials, Chemical Science, Chemistry of Materials, Small, Chemical Communications, ACS Appl. Mater. Interfaces, Journal of Materials Chemistry A-C, Polymer Chemistry, Scientific Report, Macromolecular Rapid Communications, Langmuir, Soft Matter, Advanced Materials Interfaces, Journal of Physical Chemistry B和Polymer等期刊上发表一作/通讯作者SCI学术论文70余篇,共发表SCI论文120余篇,引用1900余次,H因子为24,合作出版专著4本,申请15项国家发明专利,5项获得授权。
       张佳玮研究员2010年7月毕业于南开大学,获理学博士学位,博士毕业后在清华大学化学系从事研究工作;2013年加入宁波材料所,她长期从事功能高分子材料、胶体与表面科学、超分子科学等多学科交叉领域的研究工作,在重金属离子检测、表面分子印迹薄膜等方面取得了系列创新研究成果,有关成果在国内国际权威学术期刊发表论文多篇。
  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 14:27 , Processed in 0.133568 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表