找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 419|回复: 0

[材料资讯] 邓宏魁团队Nature:化学小分子诱导人成体细胞转变为多潜能干细胞

[复制链接]

79

主题

106

帖子

154

积分

注册会员

Rank: 2

积分
154
发表于 2022-4-20 13:00:01 | 显示全部楼层 |阅读模式
2022年4月13日,北京大学生命科学学院、北大-清华生命联合中心邓宏魁研究团队在国际学术期刊《自然》(Nature)杂志在线发表了题为“Chemical reprogramming of human somatic cells to pluripotent stem cells”的研究论文,首次在国际上报道了使用化学小分子诱导人成体细胞转变为多潜能干细胞这一突破性研究成果。运用化学小分子重编程细胞命运(化学重编程),是继“细胞核移植”和“转录因子诱导”之后新一代的,由我国自主研发的人多潜能干细胞制备技术,为我国干细胞和再生医学的发展解决了底层技术上的“瓶颈”问题。
        多潜能干细胞具有无限增殖的特性和分化成生物体所有功能细胞类型的能力,这些神奇的特质使其在细胞治疗、药物筛选和疾病模型等领域具有广泛的应用价值,是再生医学领域最为关键的“种子细胞”。在哺乳动物自然发育过程中,多潜能干细胞只短暂存在于胚胎发育的早期阶段,随后便会分化为构成生物体的各种类型的成体细胞,丧失其“种子细胞”的特性。如何逆转这一自然发育过程,使高度分化的成体细胞重新获得类似胚胎发育早期的多潜能状态,一直是干细胞与再生医学领域最重要的科学问题之一。
       上世纪60年代,英国科学家John Gurdon在爪蟾中开发了细胞核移植技术,1997年Ian Wilmut团队利用该技术制备了克隆羊多莉,证明了哺乳动物高度分化的体细胞也可以被逆转为早期胚胎的初始状态,并获得了发育为整个动物个体的能力。2006年,日本科学家Shinya Yamanaka报道了使用转基因的方式可以将小鼠成体细胞重编程为多潜能干细胞,称为诱导多潜能干细胞(induced pluripotent stem cell,iPS细胞)。细胞核移植和导入外源基因的方法,证明了哺乳动物体细胞可以通过重编程逆转为胚胎发育早期状态,重新获得“多潜能性”。这两项技术于2012年荣获诺贝尔生理学或医学奖。iPS技术的建立,打破了传统胚胎干细胞的伦理限制,为构建病人自体特异性干细胞系提供了全新的方法,大大加速了干细胞临床应用的进程。近年来,已开展了针对帕金森、糖尿病和癌症等多种重点疾病的细胞治疗临床试验。然而,目前细胞治疗的技术体系都是国外发展起来的,中国能否拥有原创的底层技术?
       长期以来,邓宏魁团队一直致力于开发调控细胞命运的新方法和建立制备干细胞的底层技术。2013年,邓宏魁团队在Science杂志发表了一项原创性的研究成果,即不依赖卵母细胞和转录因子等细胞内源物质,仅使用外源性化学小分子就可以逆转细胞命运,将小鼠体细胞重编程为多潜能干细胞(chemically induced pluripotent stem cells, CiPS细胞)。相比传统方法,化学小分子操作简便灵活,时空调控性强、作用可逆,可以对细胞重编程过程进行精确操控。另外小分子诱导体细胞重编程技术作为非整合方法,规避了传统转基因操作引发的安全问题,有望成为更安全的临床治疗手段。之后,邓宏魁团队又相继在Cell和Cell Stem Cell等杂志发表文章,详细阐明了化学重编程独特的分子机理,并进一步对小鼠化学重编程体系进行了大幅优化。随后,包括谢欣、姚红杰、裴端卿、刘林、祝赛勇等多个研究组利用相同或类似的化学小分子组合,重复和优化了小鼠化学重编程技术。化学重编程诱导多潜能干细胞的研究开辟了一条全新的体细胞重编程途径,不仅有助于更好地理解细胞命运决定和转变机制,而且为未来再生医学治疗重大疾病带来新的可能。
        本次研究中,邓宏魁团队首次报道了使用化学重编程的方法,成功实现了使用化学小分子将人成体细胞诱导为多潜能干细胞(人CiPS细胞)。这一技术的建立开辟了人多潜能干细胞制备的全新途径,使其向临床应用,迈进了关键一步。

干细胞技术

干细胞技术
图1. 新一代诱导多潜能干细胞技术
         作为高等动物,人类成体细胞特性和稳态调控的复杂性远非小鼠成体细胞可比,在表观遗传层面上存在重重障碍,严重限制了在人类成体细胞中激发细胞可塑性的可能。自2013年以来,尽管众多国际团队在小鼠化学重编程工作的启发下进行大量尝试,却一直未能解决人类成体细胞的化学重编程问题。这使得领域内普遍认为:人类成体细胞的表观遗传限制是极其严格的,很可能无法通过化学重编程激发人类成体细胞获得多潜能性。邓宏魁团队经过长期地坚持和不懈努力,突破了这一瓶颈。这一突破的关键步骤受低等动物再生过程启发。蝾螈等低等动物在受到外界损伤后其体细胞会自发的改变本身的特性,进而通过去分化获得一定的可塑性,借助这一可塑的中间状态实现肢体的再生。沿着这一思路,研究团队进行了大量化学小分子的筛选和组合,最终发现高度分化的人成体细胞在特定的化学小分子组合的作用下,同样可以发生类似去分化的现象,获得具有一定可塑性的中间状态。在此基础上,研究团队最终实现了人CiPS细胞的成功诱导。

干细胞技术

干细胞技术
图2. 人体细胞化学重编程诱导人CiPS细胞
        与传统的技术体系相比,CiPS细胞诱导技术具有更加安全和简单、易于标准化、易于调控等不可替代的优势,突破了iPS技术面临的限制,具有广阔的临床应用前景。1)安全性方面,之前在小鼠CiPS细胞中已经证明,其携带的遗传突变显著少于传统 iPS 细胞,产生的嵌合体小鼠在长达6个月的观察期内不产生肿瘤且全部健康存活。同时,人CiPS细胞分化来源的胰


        文章来源:北京大学
        邓宏魁教授,北京大学博雅讲席教授,清华-北大生命科学联合中心高级研究员。2010-2016年当选为国际干细胞生物学学会(ISSCR)理事会理事,目前担任Cell及Cell Stem Cell等杂志的编委。在Nature、Science、Cell、New England Journal of Medicine、Cell Stem Cell等期刊发表论文100余篇, 论文被引用1万余次。在干细胞研究领域做出多项开创性的贡献,尤其在小分子化合物诱导细胞命运转变方面在国际上做出了一系列开拓性工作:1)首次实现完全使用小分子化合物逆转“发育时钟”,让体细胞重新获得多潜能性;2)利用化学小分子建立了一种全新的具有全能性特征的干细胞;3)首次采用CRISPR基因编辑技术结合造血干细胞移植开展治疗艾滋病的临床研究,证明了CRISPR技术临床治疗的安全性;4)利用化学调控的手段实现了人肝脏细胞在体外的长期功能维持;5)解析了化学重编程不同于传统重编程的分子机制;6)实现小分子化合物诱导体细胞成为功能性神经元; 7)提出细胞命运决定的“跷跷板模型”,为研究细胞命运决定提供了全新的视角。






  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-16 19:29 , Processed in 0.092128 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表