找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 433|回复: 0
打印 上一主题 下一主题

[材料资讯] 游劲松团队与张程课题组在氧族杂稠环共轭半导体材料领域取得新进展

[复制链接]

151

主题

170

帖子

299

积分

中级会员

Rank: 3Rank: 3

积分
299
跳转到指定楼层
楼主
发表于 2022-11-17 06:00:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
随着科学技术的不断发展,产业革命的不断升级,国家间战略性资源的竞争日益加剧,对高性能新材料的需求日益增长,新材料的开发和应用成为科技竞争的制高点和科学研究的热点。如何高效构筑廉价、高性能的有机半导体材料是其中一个重要挑战。多并苯体系如并四苯、并五苯等是一类具有广泛前景的高性能半导体材料,但随着苯环单元的增加,稳定性降低,构筑难度增大。
        近日,游劲松团队与张程课题组合作,以萘这类最简单的多并苯化合物为研究对象,通过RuCl3催化下萘C-8位的C-H/C-H自偶联及环化反应,高效构筑了一系列氧族元素掺杂的新型蒽嵌蒽类衍生物,并通过杂原子策略、取代基策略以及氧化策略深入研究这类材料的构效关系。通过一系列单晶结构分析和理论计算验证,发现杂原子策略可以调控分子堆积的滑移方向以及π-π堆积距离;取代基策略可以调控材料的堆积模式(一维堆积、二维鱼骨形堆积);而氧化策略则可以引入更多的氢键相互作用,主导材料的排列方式。将该系列材料制备单晶场效应晶体管器件,并对其半导体特性进行了表征。研究表明,硫杂蒽嵌蒽(PTT)具有最高可达1.1 cm2 V-1 s-1的空穴迁移率。
        值得一提的是,通过将PTT的硫原子氧化成砜,得到的砜杂蒽嵌蒽(PTT-O4)表现出极强的缺电子性质,由传统的空穴传输材料转变为电子传输材料,其单晶场效应器件的电子迁移率为0.022 cm2 V-1 s-1。这是将硫代吡喃稠合的多并苯p型半导体材料通过氧化策略构筑n型材料的首次报道。
       该研究以“Molecular Engineering of Chalcogen-Embedded Anthanthrenes via peri-Selective C–H Activation: Fine-Tuning of Crystal Packings for Organic Field-Effect Transistors”为题目发表在Angewandte Chemie International Edition上,四川大学为第一单位,化学学院游劲松教授、兰静波教授和张程特聘研究员为该论文通讯作者,刘郑博士为论文的第一作者。感谢国家自然科学基金委、四川省科技厅、四川大学的经费支持。同时感谢李静老师和阳萌老师在化合物表征、单晶解析中提供的帮助。
        文章链接:https://onlinelibrary.wiley.com/doi/10.1002/anie.202211412
         文章来源:四川大学
        游劲松 博士,教授,四川大学化学学院院长、化学实验教学中心主任、有机化学教研室主任,曾担任化学学院教授委员会主任,十二五“863”项目“新型纳米能源材料及器件制备关键技术”首席专家。1998年6月于四川大学化学系有机化学专业获博士学位。此后,分别在台湾中兴大学、德国Rostock有机催化研究所、美国依阿华州立大学(ISU)、美国加州大学尔湾分校(UCI)等进行学习和研究工作。2000年7月晋升为四川大学副教授,2004年5月特聘为四川大学教授。2004年入选教育部新世纪优秀人才资助计划,2005年入选四川省杰出青年学科带头人培养计划,2005年获得四川省青年科技奖,2006年获得四川省突出贡献专家称号,2010年获得国家杰出青年科学基金,2012年享受国务院特殊津贴专家,2013年获得四川省学术和技术带头人称号,2014年入选国家中青年科技创新领军人才,2016年入选国家万人计划科技创新领军人才。
        张程,主要从事有机半导体材料研究。提出二维π拓展分子设计策略,开发出最高性能(发表时)的溶液加工、空气稳定n型小分子半导体材料;提出增强给受体体系醌式共振分子设计策略,发展了带隙高度可调的有机光伏电子给受体新材料;提出分子对称性设计策略实现有机共轭材料宏观极性堆积,首次在常温下观测到有机单晶的反常光伏效应,揭示了开路电压和极性尺寸的相互关系,为提高器件性能提供了理论依据。截至目前,发表论文20余篇,以第一作者和通讯作者在Acc. Chem. Res.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.等杂志发表多篇论文,其中有多篇论文成为ESI高被引、期刊封面文章、VIP文章等。在2020年中国科学院“率先行动”第一阶段重大科技成果及标志性进展中,相关成果入选面向世界科技前沿标志性成果“功能pi-体系的分子工程”。






  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-19 14:53 , Processed in 0.094243 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表