找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 352|回复: 0
打印 上一主题 下一主题

[材料资讯] 李清文、邸江涛等在人工神经肌肉纤维方面取得新进展

[复制链接]

102

主题

105

帖子

133

积分

注册会员

Rank: 2

积分
133
跳转到指定楼层
楼主
发表于 2022-11-22 10:38:12 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
生物体可以感知外部刺激并通过神经系统和肌肉组织的协同作用对环境做出反应。例如,蜗牛的触角在被触摸时会产生收缩,这种应激性反应有助于蜗牛避免突然的危险,并增加其对环境变化的适应性。随着软体机器人的快速发展,利用这种简单的融合系统,可以使未来机器人更加智能和逼真。此外,结构紧凑的多功能人工肌肉纤维有望简化传统的机械传动单元、力传感器和图像识别模块等多组件系统来实现感知-驱动功能一体化,从而轻便和灵活化软体机器人的感知与驱动单元。
  在人工肌肉纤维中集成感知功能以适应环境的变化和实现路径的实时追踪是非常必要的,但由于人工肌肉纤维驱动层和传感层之间的界面不匹配,仍然具有挑战性。团队在先前工作的基础上(Mater. Horiz., 2021, 8, 2541–2552),受蜗牛触角启发,提出了人工神经肌肉纤维的概念。通过将CNT纤维芯依次包裹在硅胶弹性体层、纳米纤维网络和MXene/CNTs薄鞘中的精巧同轴结构设计,使得人工神经肌肉纤维在同一根纤维上实现了驱动-感知-反馈的功能。精巧的结构集成中最关键是使用了纳米纤维界面,其辅助传感层实现了动态自适应追踪驱动过程但又不限制肌肉纤维的驱动行程。这项工作为未来小型化智能软体机器人的闭环控制提供了创新的解决方案。
  人工神经肌肉纤维精巧的同轴结构设计中,CNT/硅胶弹性体组件提供了驱动功能,而鞘层三维导电网络由于其灵敏的应变阻值变化特性,实现了触摸/拉伸感知和无滞后的循环驱动追踪功能。作为一个整体,该同轴结构建立了一个介电电容器,实现了灵敏的非接触感知功能。(图1)
    图1. 集成感知-驱动-反馈功能的人工神经肌肉纤维的概念示意图
  接近感知信号在不同接近速度下的敏感性可以用来感知外部行为是友好的还是危险的。例如,在日常生活中,握手动作是一个相对较慢的过程,可以通过低接近速度的感应信号来识别(图2j的黑色曲线);相反,击打动作是一个相对较快的过程,可以通过高接近速度的感应信号来识别(图2j的棕色曲线)。人工神经肌肉纤维识别接近信号速度的能力,对于未来的智能机器人采取一系列环境适应行为非常重要。(图2)
    图2. 人工神经肌肉纤维在接触模式下的压力/拉伸感知性能和在非接触模式下的接近感知性能
  人工神经肌肉纤维在驱动全过程中实现了无迟滞的路径追踪功能。无迟滞的路径追踪意味着,无论人工神经肌肉纤维是收缩还是恢复状态,纤维的位置状态都可以通过鞘层的相对电阻变化来识别。目前报道的自传感人工肌肉纤维的驱动和反馈信号之间普遍存在迟滞性问题,这导致了很难区分人工肌肉纤维的位置状态,因为一个相对电阻变化值可能对应于一个驱动周期中的两个或多个不同的位置状态。由于螺旋状人工肌肉纤维在驱动过程中的结构变化非常复杂,可能包括扭转、膨胀和弯曲,因此,原位复制结构形变对于鞘层去追踪驱动的变化是非常重要的。本工作中,引入人工神经肌肉纤维的三维多孔纳米纤维层的作用不仅是增加了与MXene/CNT鞘层的结合,而且还提供了对PDMS层驱动过程中实时的原位形变复制功能。(图3)
    图3. 人工神经肌肉纤维的电热驱动和实时路径追踪性能
  模拟生物体的神经肌肉系统,利用按压、拉伸和接近的多模态感知信号来触发人工神经肌肉纤维进行工作的应用场景如图4所示。在结合电路控制设计的起重机模型中,当人工神经肌肉纤维通过触摸(或接近)进行短暂的外部刺激时,该纤维可以检测到电阻的变化(或电容的变化)。一旦激发信号达到设定的阈值,人工神经肌肉纤维被触发收缩,通过杠杆臂提升物体。同时,通过人工神经肌肉纤维鞘层的相对电阻变化,物体运动和纤维工作过程中的位置变化被原位追踪。
    图4. 人工神经肌肉纤维的应用场景展示
  相关工作以Artificial Neuromuscular Fibers by Multi-Layered Coaxial Integration with Dynamic Adaption为题发表在Science Advances上。论文第一作者是中科院苏州纳米所博士研究生董立忠,通讯作者为李清文研究员和邸江涛研究员。苏州纳米所轻量化实验室王光华和张士钦在控制电路设计方面提供了技术支持。该工作得邸江涛到了国家重点研发计划(2020YFB1312902)和国家自然科学基金(21975281)等项目的支持。
  论文链接 :https://www.science.org/doi/10.1126/sciadv.abq7703   
         文章来源:苏州纳米所
        李清文,中科院“百人计划”研究员,博士生导师,中国科学院苏州纳米技术与纳米仿生研究所副所长。获国务院政府特殊津贴(2015)、江苏省333工程第二层次培养对象(2016)、江苏省科技进步三等奖(2014)、苏州工业园区领军人才(2011)、江苏省创新创业人才(2009)等。国际著名“Carbon”和“Advanced electronic materials”杂志编委。2000年获得清华大学化学系博士学位;2001/3-2007/12间分别在北京大学化学系、英国剑桥大学材料系和美国Los Alamos 国家实验室以博士后和助理研究员身份从事碳纳米管制备与应用研究。2008/1回国致力于纳米碳低成本可控制备、多级结构加工以及纳米碳宏观体在功能复合材料和能源方面应用研究,曾主持和参与多项科技部纳米专项、基金委重点及面上、江苏省成果转化重点项目、总装预研重点项目等,高纯度半导体碳纳米管分离、碳纳米管纤维与薄膜连续制备技术等已成功获得技术转化,相关成果在Nature、Nature materials、Nature nanotechnology, Adv. Mat., JACS, ACS Nano, Small等著名国际期刊上发表学术论文100余篇,引用次数逾4000次,获得授权发明专利30余项。
        邸江涛 男,中科院苏州纳米所研究员。1985年生,2013年7月获中国科学院大学物理化学博士学位。2013年8月至2016年5月于美国德克萨斯州大学达拉斯分校任研究助理,导师美国工程院院士Ray H. Baughman教授。2016年6月入职中国科学院苏州纳米技术与纳米仿生研究所,任项目研究员,博士生导师,中国科学院“百人计划”(青年俊才)候选人。多年来一直从事纳米碳材料的可控制备及其应用研究,在碳纳米管有序体可控制备,高性能碳纳米管宏观体干法组装和内部共价键合,纳米碳材料功能器件、驱动器、弹性导体等方向做出重要成果。在Science, Advanced Materials, Small, ACS Nano等国际一流学术期刊上发表论文近20篇。



  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 20:32 , Processed in 0.093573 second(s), 43 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表