找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 328|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘明贤研究团队将质子传导超分子氢键有机超结构应用于高性能锌-有机电池

[复制链接]

128

主题

177

帖子

298

积分

中级会员

Rank: 3Rank: 3

积分
298
跳转到指定楼层
楼主
发表于 2023-2-21 17:01:33 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
有机材料因其结构多样性和功能可调性等优点,是近年来备受关注,被视为新型可充电电池极具竞争力的电极材料。然而,有机材料往往面临着活性基团利用率低、易溶于电解液等问题,容易引发电极容量和循环稳定性衰减,特别是在高倍率充放电时表现得尤为突出。此外,有机电极材料的性能也取决于电荷载体的扩散/吸附动力学。相对于Zn2+,质子(H+)因其非常小的离子半径和质量,能够实现快速稳定的反应动力学,是锌-有机电池理想的电荷载体。然而,如何设计兼具高活性、高效质子存储、结构稳定的有机电极材料在水系锌-有机电池研究中颇具挑战。
        近日,我院刘明贤教授研究团队构建了质子传导超分子氢键有机超结构,揭示了超结构氢键网络中超稳定快速的Grotthuss质子传导机制,促进羰基位点的高效利用和低反应能垒的质子耦合氧化还原反应,实现了水系锌-有机电池高比容量、高倍率性能和长循环寿命的协同输出。相关成果“Proton-Conductive Supramolecular Hydrogen-Bonded Organic Superstructures for High-Performance Zinc-Organic Batteries”以Research Article的形式在线发表于化学领域国际著名学术期刊《德国应用化学》(Angewandte Chemie International Edition, 2023, e202219136)。
          实验结果和理论计算表明:电子属性互补的三聚氰酸(电子受体)和1,3,5-三嗪-2,4,6-三胺(电子给体)通过分子内氢键(N−H‧‧‧O and N−H‧‧‧N)和π−π平面堆叠自组装形成花状超分子氢键超结构,其超分子氢键网络展示出很强的亲电子活性和较低的能带间隙,显著提高了电子转移动力学和电极氧化还原速率。
原位/异位光谱研究表明:高度稳定的氢键超结构能有效抑制活性官能团溶解,充分暴露羰基电活性中心,引发高度可逆的氧化还原反应。氢键网络克服了锌离子去溶剂化能垒过高引起的动力学迟滞问题,促进了超稳定和快速Grotthuss质子传输,实现了锌-有机电池中质子主导的电荷存储。
         第一性原理计算、差分电荷分析和计算流体力学模拟表明:i)氢键超结构单元经历了两步连续的九电子氧化还原反应过程;ii)羰基位点与质子间存在强相互作用,发生明显的电荷传输,促进电极/电解质界面电荷累积;iii)氢键网络中独特的Grotthuss质子传导机制,有效降低了离子的扩散迁移势垒,显著提高了水系锌-有机电池中的质子存储容量。
        超分子氢键有机超结构材料用于水系锌-有机电池时,表现出高比容量(311 mAh g−1@1A g−1)、高倍率性能(135 mAh g−1@150 A g−1)和长循环稳定性(50,000次充放电后容量保持率为92.3%)。这项研究为解决有机材料的固有问题,构建高性能锌-有机电池提供了一种新的策略。
研究工作得到了国家自然科学基金项目和上海市自然科学基金项目的支持,刘明贤教授为论文的通讯作者,博士后宋子洋为论文的第一作者。法国斯特拉斯堡大学Laurent Ruhlmann教授、课题组李良春教授和甘礼华教授参与了相关研究工作。
        课题组近期在超结构材料设计及其储能研究方面取得了系列进展:首次发现多电子硝基具有高度的嗜锌活性,设计了二硝基苯@碳超结构作为锌-有机电池正极材料,揭示了硝基芳烃正极中阴离子共嵌插电荷存储机制,实现水系锌-有机电池高容量和长寿命协同输出,相关成果“Anionic Co‐insertion Charge Storage in Dinitrobenzene Cathodes for High‐Performance Aqueous Zinc‐Organic Batteries”发表于《德国应用化学》(Angew. Chem. Int. Ed., 2022, 61, e202208821);提出一种基于Lewis酸-碱对相互作用自组装策略设计碳超结构材料,促进吡啶氮/羰基氧嗜锌位点的高效利用和低反应能垒的快速离子迁移,电荷载体Zn2+/SO3CF3−交替吸附于吡啶/羰基位点诱导电极界面赝电容响应,赋予水系锌离子混合电容器超快速充电能力、高能量密度和长循环寿命(400,000次),相关成果“Lewis Pair Interaction Self‐Assembly of Carbon Superstructures Harvesting High‐Energy and Ultralong-Life Zinc-Ion Storage”发表于《先进功能材料》(Adv. Funct. Mater. 2022, 32, 2208049; 封面论文);从材料微结构设计与表面工程角度出发,提出了一种自组装策略设计层状碳超结构材料,实现了亲质子活性位点的高效利用和低扩散能垒的快速离子迁移,赋予碳基超级电容器超稳定和快速质子耦合电荷存储动力学和高达1,000,000次充放电循环,相关成果“Self-Assembled Carbon Superstructures Achieving Ultra-Stable and Fast Proton-Coupled Charge Storage Kinetics”发表于《先进材料》(Adv. Mater., 2021, 33, 2104148. ESI TOP 1%高被引论文,三度入选ESI TOP 1‰热点论文)。
       文章链接:https://doi.org/10.1002/ange.202219136
       文章来源:同济大学
        刘明贤,同济大学教授。1982年1月生于广西桂林。1999年9月进入同济大学化学系学习,2003年7月获理学学士学位;2009年5月在同济大学获得理学博士学位(物理化学),导师为甘礼华教授。2009年6月进入华东理工大学化学博士后流动站ぷ鳎ê献鞯际ξそд吡鹾槔唇淌冢�2011年7月进入同济大学化学系工作。2012年12月晋升副教授,2014年12月担任博士生导师,2016年12月破格晋升为教授。2015年7月起担任化学系党委委员/系主任助理,2016年5月担任化学科学工程学院党委委员/院长助理,2017年11月起担任化学科学与工程学院副院长/党委委员。2008年获得第六届“东方胶化杯”全国胶体与界面化学奖三等奖;2011年获得2010年度上海市研究生优秀成果(博士学位论文)奖。2012年和2014年分别入选同济大学青年英才计划培育资助和优青资助。2015年被评为2013-2014年度同济大学“青年岗位能手”。












  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-25 20:03 , Processed in 0.087732 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表