标题: 武汉大学化学与分子科学学院罗威 [打印本页]

作者: darenw    时间: 2018-3-27 18:33
标题: 武汉大学化学与分子科学学院罗威
罗威,博士,武汉大学化学与分子科学学院 教授,博士生导师。研究领域与兴趣:金属纳米晶的可控合成及其应用(化学储氢材料,燃料电池催化等),以B-N化合物为基础的化学储氢材料的设计及其可控可逆脱氢的研究。

罗威
博士 , 教授
研究方向: 无机化学, 材料化学,纳米新能源
联系电话: 027-68752366
Email: wluo@whu.edu.cn
教育与研究经历
1999.9-2003.7, 大连交通大学环境科学与工程系, 化学工程与工艺专业, 工学学士
2003.9-2008.7, 武汉大学化学与分子科学学院无机化学专业, 理学博士, 主要从事多核金属配合物, 金属冠醚的合成, 组装和性质研究, 导师是季振平教授和程功臻教授
2009.7-2010.8, 新加坡南洋理工大学化学系,博士后, 主要从事金属磷化学相关的研究, 导师是中国科学院外籍院士Prof. Francois Mathey
2010.9-2012, 美国俄勒冈大学化学系, 博士后, 主要从事含硼氮杂环化合物的储氢研究, 导师是Prof. Shih-Yuan Liu
2012.3-2015.11, 武汉大学化学与分子科学学院 副教授
2015.11 武汉大学化学与分子科学学院 教授
研究领域与兴趣
储氢材料、燃料电池、电解水制氢
湖北省化学化工学会理事
湖北省楚天学子
中国化学快报(Chinese Chemical Letters)青年编委
热烈欢迎校内外具有化学和材料背景的本科生、研究生和博士后加入本研究小组!
更多信息请浏览个人(或课题组)主页:http://gzcheng.whu.edu.cn/
1. Wei Luo, Lev N. Zakharov, Shih-YuanLiu*. 1, 2-BN Cyclohexane: Synthesis, Structure, Dynamics, andReactivity. J. Am. Chem. Soc. 2011, 133,13006–13009.
2. Wei Luo, Patrick G. Campbell, Lev N.Zakharov, Shih-Yuan Liu*. A single-component liquid-phase hydrogen storagematerial. J. Am. Chem. Soc. 2011, 133,19326-19329.
*Highlighted in
Chemical Engineering News (CEN) (2011, November 28, page 35)
Nature Chemistry 2012, 4, 5.  
Nature Climate Change 2012, 2, 23
3. Lan Yang, Wei Luo*, Gongzhen Cheng*.Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation inhydrolysis of ammonia borane and methylamine borane. ACS Appl. Mater.Interfaces 2013, 5, 8231-8240.
4. Lan Yang, Jun Su, Xiangyu Meng, WeiLuo*, Gongzhen Cheng*. In situ synthesis of graphene supported Ag@CoNicore–shell nanoparticles as highly effcient catalysts for hydrogengeneration from hydrolysis of ammonia borane and methylamine borane. J.Mater. Chem. A 2013, 1, 10016–10023.
5. Nan Cao, Lan Yang, Cheng Du, JunSu, Wei Luo*, Gongzhen Cheng. Highly efficient dehydrogenation of hydrazineover graphene supportedflower-like Ni–Pt nanoclusters at room temperature. J.Mater. Chem. A 2014, 2, 14344–14347.
6. Cheng Du, Yuxiang Liao, Xing Hua,Wei Luo*, Shengli Chen*, Gongzhen Cheng. Amine–borane assisted synthesis ofwavy palladium nanorods on graphene as efficient catalysts for formic acidoxidation. Chem. Commun. 2014, 53, 12843-12846.
7. Nan Cao, Lan Yang, Hongmei Dai,Teng Liu, Jun Su, Xiaojun Wu, Wei Luo*, Gongzhen Cheng. Immobilization ofUltrafine Bimetallic Ni− Pt Nanoparticles Inside the Pores of Metal− OrganicFrameworks as Efficient Catalysts for Dehydrogenation of Alkaline Solution ofHydrazine. Inorg. Chem. 2014, 53, 10122-10128.
8. Hongmei Dai, Nan Cao, Lan Yang, JunSu, Wei Luo*, Gongzhen Cheng. AgPd nanoparticles supported on MIL-101 as highperformance catalysts for catalytic dehydrogenation of formic acid. J.Mater. Chem. A 2014, 2, 11060-11064.
9. Bingquan Xia, Nan Cao, Hongmei Dai,Jun Su, Xiaojun Wu, Wei Luo*, Gongzhen Cheng. Bimetallic Nickel–RhodiumNanoparticles Supported on ZIF-8 as Highly Efficient Catalysts forHydrogen Generation from Hydrazine in Alkaline Solution. ChemCatChem 2014, 6,2549-2552.
10. Lan Yang, Jun Su, Wei Luo*,Gongzhen Cheng. Size controlled synthesis of tetrametallic Ag@CoNiFe core-shellnanoparticles supported on graphene: highly efficient catalysts forhydrolytic dehydrogenation amine boranes. ChemCatChem 2014, 6,1617-1625.
11. Nan Cao, Jun Su, Xinlin Hong, WeiLuo*, Gongzhen Cheng. In situ facile synthesis of Ru-based core–shellnanoparticles supported on carbon black and their high catalytic activityin the dehydrogenation of amine-boranes. Chem. Asian. J. 2014, 9,562-571.
12. Lan Yang, Xing Hua, Jun Su, WeiLuo*, Shengli Chen, Gongzhen Cheng*. Highly efficient hydrogen generationfrom formic acid-sodium formate over monodisperse AgPd nanoparticles atroom temperature. Appl. Catal. B 2015, 168,423-428.
13. Yeshuang Du, Jun Su, WeiLuo*, Gongzhen Cheng. Graphene-Supported Nickel-Platinum Nanoparticles asEfficient Catalyst for Hydrogen Generation from Hydrous Hydrazine atRoom Temperature. ACS Appl. Mater. Interfaces 2015, 7,1031-1034.
14. Hongmei Dai, Bingquan Xia,Lan Wen, Cheng Du, Jun Su, Wei Luo*, Gongzhen Cheng. Synergisticcatalysis of AgPd@ZIF-8 on dehydrogenation of formic acid. Appl. Catal. B 2015, 165,57-62.
15. Lan Wen, Xiaoqiong Du, Jun Su, WeiLuo*, Ping Cai*, Gongzhen Cheng. Ni-Pt nanoparticles growing on metal organicframeworks (MIL-96) with enhanced catalytic activity for hydrogen generationfrom hydrazine at room temperature. Dalton Trans. 2015, 44,6212-6218.
16. Pingping Zhao, Nan Cao, Jun Su,Wei Luo*, Gongzhen Cheng*. NiIr nanoparticles immobilized on the pores ofMIL-101 as highly efficient catalyst toward hydrogen generation from hydroushydrazine. ACS Sustainable Chem. Eng. 2015, 40,6180-6187.
17. Pingping Zhao, Nan Cao, Wei Luo*,Gongzhen Cheng. Nanoscale MIL-101 supported RhNi nanoparticles: an efficientcatalyst for hydrogen generation from hydrous hydrazine. J. Mater.Chem. A 2015, 3, 12468-12475.
18. Bingquan Xia, Kang Chen, Wei Luo*,Gongzhen Cheng. NiRh nanoparticles supported on nitrogen-doped porous carbonsas highly efficient catalysts for dehydrogenation of hydrazine in alkalinesolution. Nano Res. 2015, 8, 3472-3479.
19. Bingquan Xia, Teng Liu, Wei Luo*,Gongzhen Cheng. NiPt-MnOx supported on N-doped porous carbon derived frommetal-organic frameworks for highly efficient hydrogen generation fromhydrazine. J. Mater. Chem. A 2016, 4, 5616-5622.
20. Xiaoqiong Du, Cheng Du, Ping Cai*, WeiLuo*, Gongzhen Cheng. NiPt nanoparticles supported on boron and nitrogenco-doped graphene for superior hydrazine dehydrogenation and methanoloxidation. ChemCatChem 2016, 8, 1410-1416.
21. Pingping Zhao, Wei Xu, Xing Hua, WeiLuo*, Shengli Chen*, Gongzhen Cheng. Facile synthesis of a N-doped Fe3C@CNT/porouscarbon hybrid for an advanced oxygen reduction and water oxidationelectrocatalyst. J. Phys. Chem. C 2016, 120,11006-11013.
22. Teng Liu, Pingping Zhao, Xing Hua, WeiLuo*, Shengli Chen*, Gongzhen Cheng. A Fe-N-C hybrid electrocatalyst derivedfrom a bimetal-organic framework for efficient oxygen reduction. J.Mater. Chem. A 2016, 4, 11357-11364.
23. Quan Zuo, Pingping Zhao, Wei Luo*,Gongzhen Cheng*. Hierarchically porous Fe-N-C derived from covalent-organicmaterials as a highly efficient electrocatalyst for oxygen reduction. Nanoscale 2016, 8,14271-14277.
24. Pingping Zhao, Xing Hua, Wei Xu, WeiLuo*, Shengli Chen*, Gongzhen Cheng. Metal-organic framework-derived hybrid ofFe3C nanorod-encapsulated, N-doped CNTs on porous carbon sheets for highlyefficient oxygen reduction and water oxidation. Cat. Sci. Technol. 2016, 6,6365-6371.
25. Xiaoqiong Du, Shiyi Tan, Ping Cai, WeiLuo*, Gongzhen Cheng. A RhNiP/rGO hybrid for efficient catalytic hydrogengeneration from an alkaline solution of hydrazine. J. Mater. Chem.A 2016, 4, 14572-14576.
26. Fulin Yang, Pingping Zhao, Xing Hua,Wei Luo*, Gongzhen Cheng, Wei Xing, Shengli Chen*. A Cobalt-based hybridelectrocatalyst derived from a carbon nanotube inserted metal-organic frameworkfor efficient water-splitting. J. Mater. Chem. A 2016, 4,16057-16063.
27. Jiahao Yu, Gongzhen Cheng, WeiLuo.* Hierarchical NiFeP microflowers directly grown on Ni foam forefficient electrocatalytic oxygen evolution. J. Mater. Chem. A 2017, 5,11229-11235.
28. Cheng Du, Lan Yang, Fulin Yang,Gongzhen Cheng, Wei Luo.* Nest-like NiCoP for highly efficient overall watersplitting. ACS Catal. 2017, 7, 4131-4137.
29. Fulin Yang, Yongting Chen, GongzhenCheng, Shengli Chen,* Wei Luo.* Ultrathin nitrogen-doped carbon coated with CoPfor efficient hydrogen evolution. ACS Catal. 2017, 7,3824-3831.
30. Yeshuang Du, Gongzhen Cheng, Wei Luo.*Colloidal synthesis of urchine-like Fe doped NiSe2 forefficient oxygen evolution. Nanoscale 2017, 9,6821-6825.
31. Lihong Fu, Ping Cai,* GongzhenCheng, Wei Luo*. Colloidal synthesis of iridium-iron nanoparticles forelectrocatalytic oxygen evolution. Sustainable Energy Fuels 2017, 1,1199-1203.
32. Xiaoqiong Du, Chao Liu, Cheng Du, PingCai, Gongzhen Cheng, Wei Luo*. Nitrogen-doped graphene hydrogel-supportedNiPt-CeOx nanocomposites and their superior catalysts for hydrogen generationfrom hydrazine at room temperature. Nano Res. 2017, 10,2856-2865.
33. Quan Zuo, Gongzhen Cheng, Wei Luo*. Areduced graphene oxide/covalent cobalt porphyrin framework for efficient oxygenreduction reaction. Dalton Trans. 2017, 10,2856-2865.
34. Jiahao Yu, Gongzhen Cheng, Wei Luo*.Ternary nickel-iron sulfide microflowers as robust electrocatalyst forbifunctional water splitting. J. Mater. Chem. A 2017, 5,15838-15844.
35. Yeshuang Du, Gongzhen Cheng, Wei Luo*.NiSe2/FeSe2 nanodendrites: a highly efficientelectrocatalyst for oxygen evolution reaction. Catal. Sci. Technol. 2017, 7,4604-4608.
36. Fulin Yang, Luhong Fu, Gongzhen Cheng,Shengli Chen*, Wei Luo*. Ir-oriented nanocrystalline assemblies with highactivity for hydrogen oxidation/evolution reactions in an alkalineelectrolyte. J. Mater. Chem. A 2017, 5,22959-22936.
37. Yeshaung Du, Chao Liu, Gongzhen Cheng,Wei Luo*. Cuboid Ni2P as a bifunctional catalyst for efficienthydrogen generation from hydrolysis of ammonia borane and electrocatalytichydrogen evolution. Chem. Asian J. 2017, 12,2967-2972.
38. Luhong Fu, Gongzhen Cheng, WeiLuo*. Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles ashighly active bifunctional electrocatalysts for acidic overall watersplitting. J. Mater. Chem. A 2017, 5, 24836-24841.


作者: chandler    时间: 2021-4-6 16:37
层状过渡金属硫族化物(TMD)纳米材料在电催化析氢反应(HER)中已成为贵金属的极具潜力的替代催化剂。然而,目前的层状TMDs家族主要局限于IV-VII族过渡金属,而其他族金属基层状TMDs的合成仍然是一个挑战。


       鉴于此,武汉大学的罗威教授课题组首次利用原子分辨透射电子显微镜证实了通过简单的自下而上胶体合成方法,可以成功得到具有2H和1T混合相的六方RuSe2(h-RuSe2)纳米片,可以实现高活性HER电催化,这个RuSe2纳米片是层状TMDs家族中的一个新成员。
       本文要点:
      1) 研究人员以Ru(acac)3和Se粉为原料,在油胺溶液中成功地合成了h-RuSe2。所合成的h-RuSe2呈现出褶皱状的纳米片形貌,纳米片的直径约为40–70 nm。h-RuSe2纳米片主要是三角棱柱状的2H相,此外,除了2H相外,还观察到h-RuSe2纳米薄片的超薄1T相。纳米薄片呈六角形,直径约为70 nm,超薄纳米片处于八面体配位的1T相。
      2) 研究发现,h-RuSe2只有在经过600 °C退火后才能转变为立方RuSe2(c-RuSe2)的热力学有利相,h-RuSe2具有类Pt的电催化HER性能。实验结果和密度泛函理论(DFT)计算结果表明,H2O吸附自由能的提高、H的优化吸附自由能和h-RuSe的电导率的显著提高是导致h-RuSe2具有优异电催化HER活性的主要原因。
      Yuanmeng Zhao, et al. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution. Angew. Chem. Int. Ed., 2021, 7013–7017.


作者: cuihuo    时间: 2023-6-16 20:10
相比于质子交换膜燃料电池,阴离子交换膜燃料电池可以采用低成本的非Pt材料作为催化剂,因而备受关注。但是,发展在工况条件下具有高稳定性、低成本、高效的HOR催化剂是促进阴离子交换膜燃料电池商业化的关键。含有五种及以上的高熵合金(HEA)具有独特的原子构型和电子结构,因而有利于产生协同效应、可控的催化活性以及增强的结构稳定性。尽管已经开发了多种用于高效电催化的HEA,但是受到传统计算研究方法的限制,很难通过密度泛函理论(DFT)计算方法来直接研究复杂的HEA体系的基元反应的热力学吸附过程,因此阻碍了对催化机制的深入理解。
鉴于此,武汉大学罗威教授和陈胜利教授等人制备了PdNiRuIrRh HEA纳米颗粒,实现了优异的碱性HOR性能,并通过机器学习蒙特卡洛理论计算揭示了HEA的复杂原子分布和配位环境,从根本上理解了碱性HOR性能增强的起源。这项工作为HEA的原子结构和催化机制提供了重要的见解,并为开发先进的HOR电催化剂提供了新的思路。
本文要点:
1) 以预热的三甘醇为还原剂和溶剂,通过低温快速还原等摩尔量的五种金属前体实现了单相PdNiRuIrRh HEA纳米颗粒的简易制备,其中Pd/Ni/Ru/Ir/Rh的原子比为26.5/26.2/14.8/16.8/15.7;
2) 在0.1 M KOH电解质中,HEA电催化剂展现出超高的HOR质量活性,达到3.25 mA μg-1,分别是初始Pd、Ru、Rh、Ir和商业Pt/C的52、26、12、7和8倍,且优于大多数已报道的贵金属基催化剂,此外,该催化剂还表现出优异的抗CO毒化能力;
3) 通过机器学习蒙特卡洛理论计算,发现Pd-Pd-Ni/Pd-Pd-Pd成键环境和Ni/Ru亲氧位点能够改善*H的吸附/脱附并增强*OH吸附强度,因而显著增强了HEA的HOR活性和稳定性;
4) 结合循环伏安测试和机器学习电势模拟,阐明了HEA的催化活性主要源自于表面Pd和Ni的独特配位环境。
Yana Men, et al., Understanding alkaline hydrogen oxidation reaction on PdNiRuIrRh high-entropy-alloy by machine learning potential. Angew. Chem. Int. Ed., doi: 10.1002/anie.202217976.






欢迎光临 (http://www.cailiaoquan.com/) Powered by Discuz! X3.2