找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1996|回复: 1

[课题组] 清华大学材料学院伍晖副教授

[复制链接]

84

主题

85

帖子

91

积分

注册会员

Rank: 2

积分
91
发表于 2017-3-11 17:02:19 | 显示全部楼层 |阅读模式
伍晖,1983年1月出生,博士,清华大学材料学院副教授。主要从事功能无机纳米材料和新能源材料的制备和应用研究。2004年7月毕业于清华大学化学工程系高分子专业,2009年7月获清华大学工学博士学位,2009年7月起在美国斯坦福大学材料系从事博士后研究。2013年5月进入清华大学材料学院工作,任职副教授。从事能源存储材料、一维纳米结构无机功能材料的合成、组装及其结构-功能一体化的研究。以第一作者或通讯作者身份在Nature Chemistry, Nature Nanotechnology, Nature Communications等学术期刊发表论文80余篇,发表论文被引用超过9000次, H因子33。所发表论文有13篇被计入ISI高引用论文(ISI highly cited papers)。获得麻省理工科技评论(MIT Technology Review)评选的2014年度35位35岁以下青年创新人物(35 Innovators Under 35, or TR35),入选清华大学“基础研究青年骨干人才计划”,获得全国百篇优秀博士学位论文、北京市科技进步三等奖(排名第2)、中国硅酸盐学会优秀青年科学家提名奖、清华大学学术新秀、清华大学优秀博士毕业生。2015年开始承担科技部青年973计划 “柔性储能材料中的关键科学问题”和基金委优青项目。


伍晖博士,副教授
办公地址:清华大学逸夫技术科学楼2320房间
电子邮件:huiwu@tsinghua.edu.cn
办公电话:010-62792396


教育背景
2000/09-2004/07 清华大学化学工程系高分子专业,工学学士
2004/09-2009/07 清华大学材料科学与工程系,工学博士,导师:潘伟教授


工作履历
2009/07-2013/04 美国斯坦福大学材料系,博士后,导师:崔屹教授
2013/05至今 清华大学材料学院,副教授


研究领域
研究领域包括能源存储材料,柔性功能材料,低维纳米材料的制备和应用,材料缺陷化学与催化。
研究概况
至2016年12月,以第一作者或通讯作者身份在Nature Chemistry, Nature Nanotechnology, Nature Communications 等学术期刊发表论文80余篇,发表论文被引用超过9000次, H因子39。所发表论文有13篇被计入ISI高引用论文(ISI highly cited papers)。
目前承担的项目包括科技部青年973计划 “柔性储能材料中的关键科学问题”,基金委优秀青年基金项目,基金委中国-瑞士国际合作项目。


奖励与荣誉
麻省理工科技评论(MIT Technology Review)评选的35位35岁以下青年创新人物(35 Innovators Under 35, or TR35)(2014年)
中组部第五批“青年##计划” (2013年)
清华大学“基础研究青年骨干人才计划” (2013年)
北京市科技进步三等奖(排名第2)(2013年)
中国硅酸盐学会优秀青年科学家提名奖 (2013年)
全国百篇优秀博士学位论文 (2010年)
清华大学学术新秀 (2009年)


学术成果
发表论文
2016年
[1] Zhao, CS; Zhang, HT; Si, WJ; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nature Communications, 2016, 7, 12543.
[2] Lang, JL; Ding, B; Zhu, T; Su, HX; Luo, H; Qi, LQ; Liu, K; Wang, K; Hussain, N; Zhao, CS; Li, XY; Gao, HJ; Wu, H. Cycling of a Lithium-Ion Battery with a Silicon Anode Drives Large Mechanical Actuation. Advanced Materials, 2016, DOI:10.1002/adma.201603061.
[3] Liu, HW; Tang, H; Fang, MH; Si, WJ; Zhang, QH; Huang, ZH; Gu, L; Pan, W; Yao, J; Nan, CW; Wu, H. 2D Metals by Repeated Size Reduction. Advanced Materials, 2016, 28, 8170-8176.
[4] Huang, Y; Bai, XP; Zhou, M; Liao, SY; Yu, ZF; Wang, YP; Wu, H. Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Letters, 2016, 16, 5846-5851.
[5] Zhang, QY; Luo, X; Wang, LN; Zhang, LF; Khalid, B; Gong, JH; Wu, H. Lithium-Ion Battery Cycling for Magnetism Control. Nano Letters, 2016, 16, 583-587.
[6] Zhao, CS; Luo, X; Chen, CM; Wu, H. Sandwich electrode designed for high performance lithium-ion battery. Nanoscale, 2016, 8, 9511-9516.
[7] Huang, Y; Liao, SY; Ren, J; Khalid, B; Peng, HL; Wu, H. A transparent, conducting tape for flexible electronics. Nano Research, 2016, 9, 917-924.
[8] Ou, G; Li, ZW; Li, DK; Cheng, L; Liu, Z; Wu, H. Photothermal therapy by using titanium oxide nanoparticles. Nano Research, 2016, 9, 1236-1243.
[9] Wei, HH; Ma, XG; Gu, L; Li, JQ; Si, WJ: Ou, G; Yu, W; Zhao, CS; Li, JY; Song, MJ; Peng, ZJ; Wu, H. Aerodynamic levitated laser annealing method to defective titanium dioxide with enhanced photocatalytic performance. Nano Research, 2016, DOI: 10.1007/s12274-016-1253-0.
[10] Wang, XQ; Ou, G; Wang, N; Wu, H. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination. ACS Applied Materials & Interfaces, 2016, 8, 9194-9199.
[11] Wang, HL; Wang, N; Liu, T; Zhao, CS; Luo, X; Zhang, LF; Chang, YL; Wu, H. A heatproof separator for lithium-ion battery based on nylon66 nanofibers. Ionics, 2016, 22, 731-734.
[12] Yu W; Ou, G; Qi, LH; Wu, H. Textured LiFePO4 Bulk with Enhanced Electrical Conductivity. Journal of American Ceramic Society, 2016, 9, 3214-3216.
[13] Li, SW; Zhao, CS; Li, B; Wu, H. Performance Enhancement of Nanostructure Silicon Anode for Lithium Ion Battery. Current Nanoscience, 2016, 12, 169-174.
2015年
[14] Ou, G; Li, DK; Zhang, QH; Xu, B; Gu, L; Nan, CW; Wu, H. Arc-Melting to Narrow the Bandgap of Oxide Semiconductors. Advanced Materials, 2015, 27, 2589-2594.
[15] Saito, Y; Luo, X; Zhao, CS; Pan, W; Chen, CM; Gong, JH; Matsumoto, H; Yao, J; Wu, H. Filling the Gaps between Graphene Oxide: A General Strategy toward Nanolayered Oxides. Advance Functional Materials, 2015, 25, 5683-5690.
[16] Huang, SH; Zhao, CS; Pan, W; Cui, Y; Wu, H. Direct Writing of Half-Meter Long CNT Based Fiber for Flexible Electronics. Nano Letters, 2015, 15, 1609-1614.
[17] Huang, S; Guo, CF; Zhang, X; Pan, W; Luo, X; Zhao, CS; Gong, JH; Li, XY; Ren, ZF; Wu, H. Buckled Tin Oxide Nanobelt Webs as Highly Stretchable and Transparent Photosensors. Small, 2015, 11, 5712-5718.
[18] Luo, X; Zhang, HJ; Pan, W; Gong, JH; Khalid, B; Zhong, ML; Wu, H. SiOx Nanodandelion by Laser Ablation for Anode of Lithium-Ion Battery. Small, 2015, 11, 6009-6012.
[19] Zhao, CS; Gao, HP; Chen, CM; Wu, H. Reduction of graphene oxide in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18360-18364.
[20] Zhao, CS; Li, SW; Luo, X; Li, B; Pan, W; Wu, H. Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 18360-18364.
[21] Yu, W; Ou, G; Si, WJ; Qi, LH; Wu, H. Defective SrTiO3 synthesized by arc-melting. Chemical Communication, 2015, 51, 15685-15688.
[22] Chang, YL; Wang, C; Liang, TX; Zhao, CS; Luo, X; Guo, T; Gong, JH; Wu, H. Sol-gel synthesis of mesoporous spherical zirconia. RSC Advances, 2015, 5, 104629-104634.
[23] Luo, X; Pan, W; Liu, HG; Gong, JH; Wu, H. Glass fiber fabric mat as the separator for lithium-ion battery with high safety performance. Ionics, 2015, 21, 3135-3139.
2015年以前
[24] Huang S, Wu H,* Ruan Z, Yu Z, and Pan W.*, A Flexible and Transparent Ceramic Nanobelt Network for Soft Electronics, NPG Asia Materials, 6 (2), e86 (2014)
[25] Wang C,*Wu H,* Bao Z, Cui Y, A Sealf-healing Electrode for L-ion Battery, Nature Chemistry, 5, 12, 1042-1048, (2013).
[26] Wu H, Kong D, Ruan Z, Carney T, Fan S H, Cui Y, et. al. A transparent electrode based on metal nanotrogh network, Nature Nanotechnology, 8, 421-425, (2013).
[27] Wu H, Yu G, Pan L, Bao Z, Cui Y, Li-ion Battery Anodes by In-situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparticles. Nature Communications, 4, 1943, (2013).
[28] Wu H, Chan J, Jang C, Yao Y, Cui Y. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 7, 309-314, (2012).
[29] Wu H, Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 7, 414-429, (2012).
[30] Wu H, Zheng G, Cui Y, Engineering Empty Space between Si Nanoparticles for Lithium-Ion Battery Anodes. Nano Letters, 12, 904-909, (2012).
[31] Wu, H*, Liu, N*, McDowell, M. T., Yao, Y., Wang, C., Cui, Y, A Yolk-Shell. Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 12, 3315-3321, (2012)
[32]  Hu L*, Gao YF*, Wu H*, Cao AY, Cui Y, Silicon/CNT sponge as Li-ion battery anodes with High Area Capacity, Adv. Energy Mater. 1, 523-527, (2011).
[33] Wu H, Hu L B, Carney T, Ruan Z C, Yu Z F, Fan S H, Cui Y, Low Reflectivity and High Flexibility of ITO Nanofiber Transparent Electrodes, JACS 133, 27–29 (2011)
[34] Wu H, Hu L, Rowell M, McGehee M, Cui Y, Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode, Nano Letters 10, 4242-4248 (2010)
[35] Wu H*, Hu L*, Cui Y, Laminated paper battery, ACS Nano, 4, 5843-5848 (2010)
[36] Wu H, Han RB, Lin D, Pan W, Hierarchical Metal Nanotubes as High Performance SERS Substrate, Langmuir, 26, 6865–6868 (2010)
[37] Wu H, Sun Y, Lin D, Zhang R, Pan W, GaN Nanofibers Based on Electrospinning, Adv. Mater., 2, 227 (2009) (Highlighted by Nature Asia)
[38] Wu H, Zhang R, Lin D, Pan W, Downs P, Bio-mimetic Nanofiber Patterns with Controlled Wettability, Soft Matter, 12, 2429 (2008) (Featured on cover. Highlighted by Chemical Technology and Chemistry World)
[39] Wu H, Lin DD, Zhang R and Pan W, ZnO FET Assembled by Electrospinning, J. Am. Ceram. Soc., 91, 656 (2008)
[40] Wu H, Zhang R, Liu XX, Lin DD, Pan W, Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties. Chem. Mater., 19, 3506 (2007)
[41] Wu H, Lin DD, Zhang R, Pan W, Facile Synthesis and Assembly of Ag/NiO Nanofibers with High Electrical Conductivity. Chem. Mater., 19, 1895 (2007)
[42] Wu H, Lin D, Pan W, Oriented Nanofibers by a Newly Modified Electrospinning Method. J. Am.Ceram. Soc., 90, 632 (2007)
[43] Wu H, Lin D, Pan W, Fabrication, Assembly, and Electrical Characterization of CuO Nanofibers. Appl. Phys. Lett., 89, 133125 (2006)
[44] Wu H, Pan W. Preparation of Zinc Oxide Nanofibers by Electrospinning. J. Am. Ceram. Soc., 89, 699 (2006)
[45] Hsu P.-C., Wang S., Wu H., Narasimhan V. K., Kong D., Lee H. R., and Cui Y., Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires, Nature Communications, 4, 2522, (2013).
[46] Hu, L. B., Wu, H.& Cui, Y. Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull., 36, 760-765, (2011)
[47] Yang Y, Jeung S, Hu L, Wu H, Lee S, Cui Y, Transparent Li-ion Batteries. PNAS, 108, 13013 (2011)
[48] Pan C, Wu H, Wang C, Wang B, Zhang L, Cheng Z, Hu P, Pan W, Zhou Z, Yang X, Zhu J, Nanowire-Based High-Performance Micro Fuel Cells: One Nanowire, One Fuel Cell, Adv. Mater., 19, 1644 (2008)
[49] Lin D, Wu H, Pan W, Photoswitches and Memories Assembled by Electrospinning Aluminum-Doped Zinc Oxide Single Nanowires, Adv. Mater. 19, 3968 (2007)

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
回复

使用道具 举报

20

主题

27

帖子

29

积分

新手上路

Rank: 1

积分
29
发表于 2019-2-15 10:14:58 | 显示全部楼层
清华大学伍晖团队:原子级分散金属催化剂合成方法新进展


研究亮点:
1. 创造性地在−60 °C低温下通过溶液法合成了原子级分散钴基催化剂。
2. 制备策略具有良好的普适性,可有效调控溶液形核过程的热力学和动力学。
3.  所制备的催化剂具有高活性、高稳定性和高器件功率输出。

原子级分散金属催化剂

原子级分散金属催化剂


原子级分散催化剂的优势
由于活性组分的高度分散、金属利用效率的大幅度提升以及活性中心与相邻配位原子相互作用,单原子催化剂或原子级分散金属催化剂在诸如CO氧化反应、有机加氢反应和氧还原反应等过程中表现出优异的活性、稳定性和选择性。因此,单原子催化剂或原子级分散金属催化剂的有效合成及应用,是近年来催化和材料研究领域非常重要的研究方向。

溶液合成原子级分散催化剂的难点
溶液合成作为制备金属及其化合物等固体材料的制备方法,具体过程一般均涉及到原子级分散金属基团的快速产生、聚集、形核与生长,从而严重限制了溶液中超细纳米晶体甚至于原子级分散金属的形成。因此,如何有效调控形核过程对于溶液合成原子级分散金属催化剂就显得尤为重要且颇具挑战性。

成果简介
有鉴于此,清华大学伍晖课题组联合北航刘利民课题组、清华大学张潇源课题组和安徽大学葛炳辉课题组,创造性地在溶液体系中将反应温度降低至-60摄氏度,解决了溶液合成过程中的原子快速团聚、形核和生长的关键问题,获得了具有高活性、高稳定性和高器件功率输出的原子级分散金属钴基的氧还原电催化剂,为大规模溶液合成原子级分散金属催化剂提供了崭新的研究思路。

作者成功在−60 °C下通过液相法合成了高性能原子级分散金属钴催化剂。该低温溶液合成不仅提出了一种在湿化学合成反应过程中抑制产物形核生长的通用方法,更为进一步理解溶液反应的形核热力学和动力学、并利用传统溶液化学方法制备高性能催化材料提供了新的可行性。


参考文献:
Huang K, ZhangL, Xu T, et al. −60 °C solution synthesis of atomically dispersed cobalt electrocatalyst with superiorperformance. Nature Communications, 2019.
DOI:10.1038/s41467-019-08484-8
https://www.nature.com/articles/s41467-019-08484-8#article-info



回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-3-28 20:15 , Processed in 0.093257 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表