找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 845|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘碧录、邹小龙团队发文探讨二维材料大电流产氢电催化剂

[复制链接]

49

主题

92

帖子

120

积分

注册会员

Rank: 2

积分
120
跳转到指定楼层
楼主
发表于 2019-1-21 11:11:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

清华-伯克利深圳学院刘碧录、邹小龙、成会明团队在《自然·通讯》 (Nature Communications)期刊上在线发表了题为“调控结构及表面化学制备pH普适大电流产氢电催化剂”(Morphology and Surface Chemistry Engineering for pH-Universal Catalysts toward Hydrogen Evolution at Large Current Density)的研究论文。该研究通过设计和制备三种模型电催化剂(包括贵金属Pt、具有微纳结构的MoS2微球、具有微纳结构且表面化学成分优化的MoS2/Mo2C异质结微球),揭示了电催化剂微观结构及表面化学对大电流密度电解水产氢性能的影响。

研究发现,催化剂微观结构及表面化学组成对大电流密度下的传质(反应电解液和氢气产物)具有重要影响,进而通过优化催化剂结构和表面化学组成,制备出在大电流密度下具有优异性能和稳定性的电催化剂。同时,结合实验和理论计算揭示了电化学环境会对催化剂表面化学产生影响,进而使其在不同的pH条件下都具有优异的性能。该工作对设计大电流密度电解水产氢催化剂具有重要指导意义。

图1. 大电流密度电解水产氢催化剂设计策略:电催化剂微观结构和表面化学组成协作

当前,人类对化石能源的过度使用导致环境污染和能源短缺等问题日益突出,利用电解水方法制备氢气是可再生能源转化、进而解决能源危机的一种有效策略。电解水制氢技术目前最大的问题是高能耗。因此,开发和使用高效电催化剂、降低电解水过程中的电能消耗,是近年来电解水方向基础研究和工业应用的的重点课题。铂基催化剂是长期以来公认最有效的电解水产氢催化剂,但铂的储量小、价格高昂,限制了其大规模工业使用。近年来,非贵金属催化剂的研究发展迅速,但该类催化的性能依然难与铂基催化剂媲美。

从实际应用的角度来讲,电解水产氢的大规模应用亟待解决的首要问题是发展适用于大电流密度的电催化剂,如电流密度大于200mA/cm2至1000mA/cm2。目前,对大电流密度电解水产氢催化剂的设计和机理的研究仍是一个重大挑战。

本文提出了适用于大电流密度电解水产氢催化剂的设计和制备新策略,所制备的具有微纳结构且表面化学成分优化的MoS2/Mo2C异质结微球电催化剂,在酸性体系下,达到1000mA/cm2的电流密度所需过电压仅为227 mV;在碱性体系下,达到1000 mA/cm2的电流密度所需过电压仅为220mV;此外,该催化剂在中性体系下亦具有良好的性能,表现出不依赖于电解液pH值的优异电解水性能。

进一步测试表明该催化剂在大电流密度下具有良好的稳定性,表现出很好的实用前景。实验结合理论研究揭示了该催化剂具有优异性能的原因。其一,催化剂的微纳结构设计有利于大电流密度下的快速传质。其二,在不同电化学环境下,催化剂表面具有不同的氧修饰化学成分,使得该催化剂在各种pH环境下均表现出优异的性能。以上研究结果对理解电催化分解水过程中的基础科学问题和高效电解水催化剂的设计具有重要指导意义,相关设计策略有望进一步拓展至其他材料体系和电催化反应中。

该论文第一作者为清华-伯克利深圳学院(TBSI)2017级博士生罗雨婷,论文通讯作者为刘碧录研究员和邹小龙研究员。该研究由国家自然科学基金委以及深圳市经信委、科创委和发改委等部门支持。

原文链接:

https://www.nature.com/articles/s41467-018-07792-9


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-26 03:15 , Processed in 0.087218 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表