找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1294|回复: 0
打印 上一主题 下一主题

[材料资讯] 马光辉、夏宇飞等 Adv.Mater:基于颗粒化乳液的新冠疫苗佐剂研究取得新进展

[复制链接]

31

主题

57

帖子

93

积分

注册会员

Rank: 2

积分
93
跳转到指定楼层
楼主
发表于 2020-9-8 15:16:56 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
近日,中国科学院过程工程所生化工程国家重点实验室马光辉研究员、夏宇飞副研究员联合微生物所严景华研究员以及北京生命科学研究院戴连攀副研究员,利用独创的颗粒化乳液技术,构建铝颗粒化乳液(PAPE),已在新型冠状病毒肺炎(COVID-19)重组疫苗对小鼠的实验中取得了显著优于商品化铝佐剂的免疫应答效果。颗粒化铝佐剂的研究强化了新冠疫苗的体液免疫和细胞免疫应答,提升了疫苗的室温储存稳定性及生物安全性,为安全、高效的新冠疫苗佐剂构建提供了新策略。
  该工作于8月30日发表在《先进材料》(Advanced Materials)(DOI: https://doi.org/10.1002/adma.202004210)。
  作为一种理想的新型疫苗,重组亚单位疫苗和mRNA疫苗具备简单的结构,可将病毒中表达特异性抗体的蛋白序列通过基因工程的方式,重组表达出来,无传染性且不携带引发病原体炎症或其他副作用的成分,具有良好的生物安全性。但因其免疫原性较弱,需加入安全、高效的疫苗佐剂以提升其免疫应答。为应对突发疫情,基于现有资源/原料设计的疫苗佐剂则成为一种理想的快速解决策略。目前,铝佐剂是我国唯一批准使用的疫苗佐剂,但细胞免疫效果较差,难以引发有效的细胞免疫对机体产生综合性的保护,无法满足日益增加的疫苗佐剂需求。因此,如何合理化改造铝佐剂,保证疫苗佐剂的安全及高效是亟待解决的问题。
  图(a)基于Pickering乳剂的颗粒化铝佐剂(PAPE); (b-e)PAPE强化COVID-19疫苗的体液免疫和细胞免疫应答:(b)促进细胞内吞;(c)诱导溶酶体逃逸;(d)血清COVID-19的RBD特异性抗体IgG的滴度显著优于商品化铝佐剂;(e)大大提升了脾细胞中IFN-γT细胞的活化。
  研究人员通过颗粒化乳液将铝佐剂在油水界面排列,不仅提升了其比表面积,而且增加了疏水性,为此提升了与同样为脂类分子的细胞膜的亲和性。并且,粗糙的表面有利于树突状细胞的微管着床,进而促进了颗粒化铝佐剂乳液的细胞内吞(图b)。在进入溶酶体后,铝颗粒化乳液表面的正电性可以诱导质子海绵效应,导致大量的H离子内流,胀裂溶酶体,实现了所递送抗原的溶酶体逃逸(图c)。在COVID-19重组疫苗的小鼠免疫实验中,与商品化铝佐剂相比,显著提升了抗原特异性抗体的血清滴度以及分泌干扰素-γ的T细胞在脾细胞中的占比(图d-e),强化了新冠疫苗的体液免疫和细胞免疫应答。与此同时,铝颗粒化乳液制备原料均为临床批准材料,在注射部位炎症、主要脏器组织切片以及血清生化指标检测中均展现良好的生物安全性。而且,柔软的铝微凝胶可以为油水界面提供更好的保护,可提升储存稳定性,具备很好的室温储存稳定性。同时,本研究采用三种不同的商品化铝佐剂制备颗粒化乳液,均得到了显著提升的细胞免疫和体液免疫效果,展示了颗粒化乳液技术在构建安全高效疫苗剂型通用性平台技术的潜力。
  江南大学联合培养硕士生彭沙和东京农工大学合作培养博士生曹凤强为本文的第一作者,马光辉研究员和夏宇飞副研究员为本文通讯作者。
  过程工程所生化工程国家重点实验室基于多年开发的颗粒化乳液技术,经过系统研究,发现了柔性仿生疫苗递送新机制,并构建了一系列疫苗新剂型,相关工作相继发表于Nat Mater 2018, 17, 187、Advanced Materials, 2018, 30, 1801067、Advanced Materials, 2019, 31, 1801159、ACS Nano, 2019, 13, 13809等期刊上。得到了国家自然科学基金创新群体项目、青年科学基金项目,中国科学院先导专项、中国科学院基础前沿科学研究计划-从0到1原始创新项目、中国科学院青年创新促进会人才项目等支持。

(生物剂型与生物材料研究部)
       文章来源:过程所
       马光辉,中国科学院过程工程所研究员, 现担任过程工程副所长,生化工程国家重点实验室主任。1988年,日本群马大学工学部纤维高分子工学科,获学士学位。1993年,日本东京工业大学理工学研究科高分子工学专业,获博士学位。1994-2001年  先后日本东京农工大学工学部、大学院生物系统应用科学研究科助理教授。2001年2-3月获日本文部省海外派遣资助,赴美国Lehigh大学和New Hampshire 大学做访问学者。2001年中国科学院“百人计划引进人才”到过程工程所工作。获2002年国家杰出青年科学基金,2005年获北京市科学技术奖一等奖,2009年国家发明二等奖,2009年亚洲青年女科学奖(由Elsevier和第三世界科学院共同评审)。研究方向为均一聚合物微球的制备及在生化工程和医学工程中的应用。重点探索均一生物微球的制备及其作为分离介质、药物载体、酶固定化载体、细胞微载体的应用。发展了国际领先的尺寸均一微球的制备技术和装备,制备出了多种微球产品,如多糖介质、聚合物介质、超大孔介质等,部分产品完成规模化生产,并在生物分离领域成功获得了应用和推广。还制备出了尺寸均一的聚乳酸系列微球、多糖微球、智能型微球等,并作为药物载体获得了好的应用结果,成果得到美国辉瑞、GE公司、英国联合利华等知名企业的重视,合作进行了成果转化。主持多项国家项目和企业合作项目,撰写了8本英文学术专著中的8章,编写了6本英文丛书,3本中文专业书,主译学术书1本,在国际期刊发表了100多篇SCI收录的学术论文。



  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 16:35 , Processed in 0.167372 second(s), 43 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表