找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 635|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘忠范课题组与彭海琳课题组及合作者在扭转双层石墨烯制备研究中取得重要进展

[复制链接]

253

主题

281

帖子

382

积分

中级会员

Rank: 3Rank: 3

积分
382
跳转到指定楼层
楼主
发表于 2021-4-27 09:06:17 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
扭转双层石墨烯可视作两层石墨烯以一定的扭转角度堆叠而成,其表面会形成随扭转角度变化的摩尔周期势,其能带结构也受扭转角度的调制。例如,两层石墨烯的能带耦合会导致态密度上范·霍夫奇点的出现,从而赋予其角度依赖的光电特性;非公度扭转角的石墨烯则具有极小的摩擦力;而魔角(~1.1°)扭转石墨烯则具有一系列新奇的量子效应,引发了人们极大的研究兴趣,催生了新的研究领域——扭转电子学(Twistronics)。目前,实验室的扭转双层石墨烯(tBLG)通常是通过人工堆叠的方法制备。如何通过生长的方法直接制备具有各种扭转角度的双层石墨烯是该领域需要解决的重要问题。
       基于金属衬底的化学气相沉积(Chemical Vapor Deposition, CVD)法被认为是生长高品质石墨烯薄膜最有前景的方法,而层数及堆垛角度均严格可控的石墨烯CVD精准合成依然有待突破。前期,刘忠范课题组和彭海琳课题组基于范德华外延法,初步实现了AB堆垛双层石墨烯的控制生长(Nano Lett. 2011, 11, 1106)和扭转双层石墨烯生长(Nature Comm. 2016, 7, 10699;Nano Lett. 2015, 15, 5585)。由于AB堆垛具有更高的能量稳定性,CVD高温生长的双层石墨烯更趋向于形成AB堆垛而非扭转双层石墨烯。因此,打破AB堆垛石墨烯在能量上的优势,在高温下实现层间扭转成为一项重要挑战。
       为此,刘忠范课题组、彭海琳课题组及合作者提出了“异位成核”(Hetero-site nucleation)的生长策略,通过在生长过程中引入气流扰动控制第二层石墨烯的成核位点,使两层石墨烯的晶格取向分别受到不同区域衬底的诱导,从而得到大比例的扭转双层石墨烯(图1)。
图1 扭转双层石墨烯的异位成核法生长策略及生长结果
       铜表面石墨烯的CVD生长通常遵从“自限制”生长模型,而当氢气分压较大时,石墨烯的边缘会从金属钝化变为氢饱和终止,导致边缘与金属的相互作用变弱,并阻碍单层石墨烯的生长,因此活性碳物种可“钻”入第一层石墨烯和铜之间进行第二层的生长。而第二层石墨烯与衬底的相互作用强于石墨烯层间的相互作用,这一特点为层间扭转提供了可能。但仅仅依靠衬底的作用还不足以形成扭转,因为石墨烯的晶格取向在成核初期即被决定,如果两层石墨烯在同一位点成核,则相同的成核环境会使两层石墨烯晶格取向一致,形成AB堆垛石墨烯。研究发现,当两层石墨烯的成核位点不同时,由于衬底的台阶、扭结、位错或颗粒等微观环境的不同,层间扭转的概率会显著增加。为实现第二层石墨烯的可控成核和生长,研究团队采用了扰动生长的策略,即在CVD生长过程中改变氢气和甲烷的分压,调控石墨烯边缘的终止态和附近的局域碳物种浓度。这一方法得到了12C/13C同位素标记生长实验的验证:分别在第5 min、10 min引入“扰动”,第二层的成核时间恰好对应于5 min和10 min,第二层的成核位点也恰好在12C/13C 的交接处,所得到的石墨烯为~30°-tBLG和~9°-tBLG(图2)。同时,不采用扰动的结果则表现为AB堆垛双层石墨烯,这证明了该方法的有效性。
图2 扭转双层石墨烯的同位素标记实验
        研究团队还总结了“扰动——异位成核”方法的关键参数,通过控制两步生长法的氢气、碳源比例(图3),实现了高扭转比例(88%)的tBLG。高分辨透射电镜的表征显示出清晰的摩尔条纹(图4);电学输运测量表明其具有很高的室温载流子迁移率(68,000 cm2/Vs)(图5);角分辨光电子能谱测量显示出清晰的线性能带结构和范霍夫奇点。这些均证明了通过该方法得到的tBLG具有超高的品质。
图3 扭转双层石墨烯的异位成核法生长参数
图4 扭转双层石墨烯的透射电镜表征
图5 扭转双层石墨烯的电学性质评估
        该方法为扭转石墨烯及二维材料的制备提供了新的思路,有望为近年来新兴的扭转电子学研究提供材料基础。相关研究成果近期以“Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles”为题发表在Nature Communications 2021, 12, 2391。北京石墨烯研究院孙禄钊博士、曼彻斯特大学王子豪博士、北京大学博士研究生王悦晨为第一作者,北京大学化学与分子工程学院刘忠范教授、彭海琳教授、曼彻斯特大学林立博士、中国科学技术大学黄生洪副教授为本文通讯作者,合作者还包括曼彻斯特大学Kostya S. Novoselov教授、苏州大学Mark H. Rummeli教授、中国科学技术大学李震宇教授和牛津大学陈宇林教授等。该研究工作得到了科技部、国家自然科学基金委、北京市科委、北京分子科学国家研究中心等项目资助。
       原文链接:https://www.nature.com/articles/s41467-021-22533-1


        文章来源:北京大学
       刘忠范,男,汉族,北京大学化学与分子工程学院教授、中科院院士、发展中国家科学院院士,九三学社第十三届中央委员、院士工作委员会副主任。现任北京市石墨烯研究院院长、北京大学纳米科技中心主任、北京市低维碳材料工程中心主任等职。教育部学风建设委员会副主任和科学技术委员会委员,国家自然科学基金委员会第十四届专家评审组专家,中国化学会常务理事和纳米化学专业委员会主任,中国微米纳米技术学会常务理事。
        彭海琳、男、1978年生、湖南湘乡人,北京大学化学与分子工程学院教授、博士生导师、国家杰出青年科学基金获得者。吉林大学学士(1996-2000年),北京大学博士(2000-2005年),美国斯坦福大学博士后(2005-2009年)。 2009年6月到北京大学工作至今。一直从事纳米材料化学与纳米器件研究,当前研究兴趣包括石墨烯与拓扑绝缘体纳米结构等二维晶体材料的制备方法、化学调制与光电器件应用基础研究。已发表SCI收录论文110余篇,影响因子超过7的论文80余篇,包括Nature子刊(11篇)、J. Am. Chem. Soc.(10篇)、Nano Lett.(21篇)、Adv. Mater.(7篇)、Phys. Rev. Lett.(1篇)、ACS Nano(9篇)、Small(7篇)、Acc. Chem. Res.(1篇)、Coord. Chem. Rev.(1篇),Nano Today (1篇),论文被他引逾6600次,单篇最高他引2500余次;申请专利15项。曾获中国分析测试协会科学技术一等奖(2005年,第二完成人),入选教育部“新世纪优秀人才支持计划”(2011年),获批国家首批优秀青年基金(2012年)、中组部首批青年拔尖人才计划(2012年)、霍英东教育基金会青年教师基金(2014年)、国家青年973项目首席科学家(2014年)、和国家杰出青年科学基金(2015年)。近5年来,在国际及双边重要学术会议上做邀请报告40余次,筹划和组织国际和双边会议6次。担任中国化学会纳米化学专业委员会委员、青年化学工作者委员会委员、北京市石墨烯科技创新专项技术咨询专家委员会专家、中国石墨烯标准化委员会委员、中关村石墨烯产业联盟专家委员会秘书长、《中国科学:化学》青年编委和《科学通报》编委。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 19:03 , Processed in 0.091870 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表