找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 837|回复: 0
打印 上一主题 下一主题

[材料资讯] 侯成义、张青红在摩擦电纤维和纺织品领域取得新进展

[复制链接]

166

主题

199

帖子

346

积分

中级会员

Rank: 3Rank: 3

积分
346
跳转到指定楼层
楼主
发表于 2021-6-7 08:30:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
随着可穿戴设备的快速发展,基于摩擦电技术的新型纤维电子器件在机械能收集和自驱动传感方面展现了广阔的应用前景。近日,东华大学先进功能材料课题组在摩擦电纤维电子领域取得新进展,相关研究成果以《基于费马螺旋纳米纤维的防水耐磨可拉伸摩擦电纱线》(“Abrasion/water-proof stretchable triboelectric yarns based on Fermat spirals”, https://doi.org/10.1002/adma.202100782)为题发表于国际知名学术期刊《先进材料》(Advanced Materials)。东华大学为论文唯一完成单位,材料科学与工程学院硕士研究生张德伟、长学制博士研究生杨伟峰为共同第一作者,侯成义副研究员、张青红研究员为共同通讯作者。
       构筑高比表面积的纳米结构是提高摩擦电纱线电学输出和传感信噪比的有效手段。然而,当纳米结构与其他材料接触摩擦时,往往会承受较高的局部应力,造成磨损,进而导致摩擦电纱线的电学性能下降。此外,现有的摩擦电纱线与商业纱线产品相比,在细度、长径比、连续化制备、可编织性等方面仍有很大差距。
在本工作中,研究人员利用静电纺丝技术,通过控制静电场,应力场和速度场,在可拉伸导电纱线表面连续纺制了费马螺旋结构氟碳聚合物P(VDF-TrFE)纳米纤维,构建了动态稳定的摩擦电纱线。这种摩擦电纱线具有超高的耐磨性,稳定的可逆应变和出色的电学性能,在低频外力作用下可产生105 V, ~1.2 μA的电能输出。
(a)费马螺旋摩擦电纱线的连续化纺织流程;(b)费马螺旋纳米纤维结构的模型;(c)纱线电极和摩擦电纱线在不同制备阶段的实物照片
       特殊的费马螺旋结构显著提升了纳米纤维间的抱合力,使摩擦电纱线具有超高的耐磨性。在5000次马丁代尔标准耐磨循环后,纱线几乎没有发生质量损失和电学性能衰减。稳定的表面纳米结构使摩擦电纱线适用于工业级的纺织器械,可进行大面积的编织。
费马螺旋摩擦电纺织品的超高耐磨性。(a)标准马丁代尔测试示意图;(b)费马螺旋摩擦电纱线滑动时受力分析图;(c, d)传统静电纺丝薄膜和新型纳米纱线织物的耐磨性对比。
        此外,费马螺旋纳米摩擦电纱线具有疏水表面,水滴/汗液能在其表面迅速滚落。利用工业级设备将这种摩擦电纱线编织可得到具有高耐磨性、防水性以及透气性的摩擦电织物。
费马螺旋摩擦电纺织品的防水性。(a)水滴在纱线表面迅速滚落;(b)纱线表面的接触角测试;(c)费马螺旋摩擦电纺织品的实物照片;(d)纺织品的防水透气示意图。
        利用上述摩擦电纱线和纺织品,实现了无线手势识别、水滴发电、智能屏幕显示等多种功能。这种基于费马螺旋的摩擦电纱线在自供电传感器和人机界面领域具有广阔的应用前景。
费马螺旋摩擦电纱线及织物在智能穿戴领域的应用。(a)手部姿态实时捕捉;(b)触觉传感;(c)单根纱线用于水滴发电;(d)用于智能屏幕显示。
        近年来,课题组在该领域取得了一系列研究成果:利用工业级的纺丝设备实现可拉伸两栖能源纱线的连续化与规模化生产(Nature Communications, 2019, 10, 868);以“全纤维”为设计原则,开发了具有湿热稳定性和舒适性的摩擦/铁电协同电子织物(Nature communications, 2019, 10, 5541);耦合毛细效应,制造了新型铁电增强型摩擦电吸湿快干纺织品(Advanced Materials, 2021, 33, 2007352)。
       该研究工作得到了国家自然科学基金、国家高层次人才特殊支持计划青年项目、上海市青年科技启明星计划等基金的资助。
       论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202100782


      文章来源:东华大学
      侯成义,硕士生导师。于2014年获东华大学博士学位,期间于2013.06-2013.12获得东华大学优博访学项目支持,到丹麦技术大学化学系Jens Ulstrup院士课题组进行学术访问。于2014.09进入东华大学纤维材料改性国家重点实验室、材料学院无机非金属材料系工作。2015年获得“HC Ørsted-Marie Curie学者计划”资助于丹麦技术大学进行研究工作,2016年获得欧盟“玛丽居里学者”称号。目前,主要从事基于低维纳米材料的有机-无机复合体系的研究,设计了一系列具有环境响应特性的纳米复合材料,以及纤维、薄膜、气凝胶状的三维宏观材料,提升了这些材料在人造肌肉、电子皮肤、柔性驱动等领域的应用价值。近五年,在Science子刊Science Advances、Advanced Materials、Nano Energy、Chemistry of Materials等国际重要期刊发表研究论文30余篇;先后主持国家自然科学基金青年基金,上海市自然科学基金等项目。
       张青红,东华大学材料学院教授、博士生导师。从事无机非金属材料专业,近几年在纳米二氧化钛基半导体光催化材料的晶型和晶粒尺寸控制、光催化活性与晶粒尺寸的关系、氮化物半导体的制备与性能等方面的基础研究与应用基础研究中取得了一系列研究成果。在国际核心刊物如:Appl. Catal. B, Langmuir,J. Mater. Chem., J. Am. Ceram. Soc., Chem. Lett.等刊物共发表论文50余篇,论文被SCI收录47篇,被SCI引用超过500篇次,获得国家发明专利7项。2002年和2006年分别获得上海市科技进步二等奖各1项。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 17:52 , Processed in 0.092474 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表