找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1129|回复: 0
打印 上一主题 下一主题

[材料资讯] 王雷教授Nature:探索转角过渡金属硫化物中量子相变的临界行为

[复制链接]

182

主题

218

帖子

327

积分

中级会员

Rank: 3Rank: 3

积分
327
跳转到指定楼层
楼主
发表于 2021-9-27 08:30:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
量子相变是物理学的重要科学问题之一。近年来,在二维材料莫尔超晶格体系中观测到多种关联电子态,比如超导态、关联绝缘态、奇异金属态等。电子之间的库仑相互作用的强弱以及其相比于电子动能的大小是这些关联电子态出现、消失和在不同的量子态之间发生相变的重要因素。比如,可以通过调节掺杂的载流子浓度或者改变电子能带宽度等方法来调控金属-绝缘态相变。然而,在传统的强关联材料体系中,实验上对于量子相变的可调控的参数比较有限,参数可调控的范围也较小,这些都限制了对关联绝缘态和其附近超导态或反常金属态等量子态之间相变机制的研究。
         在这篇工作中,南京大学的王雷教授和美国哥伦比亚大学的合作者制备了高质量的转角双层WSe2器件(tWSe2),利用电学输运测试的方法研究了其中的金属-绝缘态相变和半填充附近的奇异金属态。在这个体系中,电子浓度和能带结构都可以通过外部栅压精确调控而不引入额外的无序扰动。由于tWSe2中自旋轨道耦合和层间杂化作用较强,以及在半填充处出现的关联绝缘态,使得其可以作为研究三角晶格单带哈伯德模型德理想平台。值得一提的是,此前也是王雷教授小组在tWSe2体系半填充处观测到了关联绝缘态[Nature Materials19, 861-866(2020)]。延续之前的工作,他们利用静电掺杂和电位移场精确将绝缘态调控到金属态,从而可以在整个相空间系统性地研究tWSe2输运性质。
        在最新的工作中,作者首先利用载流子浓度和电位移场调控,发现关联绝缘态有良好定义的边界,测量热激活能隙表明这里的带隙可以连续平滑变化到零,表明在边界处发生的是二级相变(图1)。随后研究了关联绝缘态附近掺杂调控的金属态(图2),发现了电阻随温度变化反常的线性行为,然后作者研究了更大掺杂范围内电阻随温度变化的相图(图3),分析了电阻和温度的关系,发现这样的量子临界行为只存在于靠近关联绝缘态两边区域,并且在高温下不同于铜氧化物超导体的反常饱和现象,而在低温下其耗散与普朗克极限相当。为了能够与非常规超导体中量子临界行为对比,作者进一步研究了相变区域随磁场变化的关系,同样也发现了随磁场变化的线性依赖关系,证明了在量子临界区域磁场和温度对于决定散射率同等的重要性。最后作者研究了相图随电位移场变化(图4),剩余电阻的分析表明在绝缘态中存在强的量子波动。总体而言,转角WSe2为研究在三角晶格中掺杂以及可控带隙的金属-绝缘态量子相变提供了理想平台,为探索自旋液体以及强关联引起的绝缘态开辟了新的方向。
该工作以南京大学的王雷教授和美国哥伦比亚大学的Pasupathy和Dean教授作为共同通讯作者发表在2021年9月15日的Nature期刊上[Nature597,345–349,2021]。
图1. 转角WSe2样品中连续的金属-绝缘态转变。a.器件示意图;b.实空间莫尔超晶格结构; c.金属-绝缘态转变随电位移场和载流子浓度调控相图;d, e分别对应于c图中虚线所示的关联绝缘态能隙的变化。
图2. 转角WSe2样品中掺杂导致的金属-绝缘态相变。a.样品电阻随温度和掺杂浓度变化相图;b.微分电阻相图;c, d.关联绝缘态附近电阻随温度变化曲线。
图3. 转角WSe2样品中的量子临界相图。a.电阻随温度以及掺杂浓度的变化关系;b.对a图中电阻随温度变化关系分类;c.选取的代表性电阻与温度的变化关系拟合。
图4. 电位移场驱动的量子临界行为。a.在金属-绝缘态相变范围内,对应的不同电位移场下的半填充态处的电阻与温度的关系;b.绝缘态带隙与载流子浓度以及电位移场的关系。c.与b图中相同的掺杂范围内,线性系数αL随电位移场和填充系数变化关系。d.不同电位移场下,电阻与温度的关系。e.剩余电阻随掺杂浓度以及电位移场的变化。f.在半填充处,能隙与剩余电阻的关系。
        文章链接:https://www.nature.com/articles/s41586-021-03815-6


        文章来源:南京大学
         王雷,南京大学物理学院教授,博士生导师,国家海外高层次人才,江苏省双创人才。2005年在新加坡国立大学获得一等荣誉学士学位,2008年在新加坡国立大学获得硕士学位,2014年在美国哥伦比亚大学获得博士学位。2015年获得康奈尔大学 Kavli Fellowship,合作导师:Paul McEuen院士。2018年获聘美国加州大学戴维斯分校助理教授,博士生导师。2020年在南京大学物理学院担任教授,组建二维材料量子器件实验室。
         王雷教授长期从事二维量子材料的电学输运性质的研究,在二维材料异质结器件中作出了开创性的技术突破。其2013年发表在Science期刊的科研成果,发明了二维材料的pick-up转移和堆积技术,突破性地提高了二维材料的电子器件质量,并在实验上发展了二维材料异质结这个研究方向。在此领域上取得了多个重要的科研成果,包括实验观测到霍夫施塔特蝴蝶能谱【Nature 497, 598‐602, (2013)】、随外电场可调控的分数量子霍尔态【Science 345, 61‐64, (2014)】、量子分形体系中的反常分数量子霍尔态【Science 350, 1231-1234 (2015)】、单层原子上的随应力可调控的极化电荷【Nature 514, 470-474 (2014)】、石墨烯超快表面等离激元【Nature Photonics 10, 244-247, (2016)】、双层石墨烯上的随外电场可调控激子【Science 358, 907-910 (2017)】,转角二维TMD体系中的相关绝缘态【Nature Materials 19, 861-866 (2020)】。王雷教授目前的研究方向为二维材料多层异质结器件微加工及其电、磁输运性质,电子关联体系等。
         王雷教授已发表学术SCI学术论文40余篇,包括Nature、 Science 及其子刊系列25篇。其中 Science 6篇 ,Nature 4篇,Nature Materials 1篇,Nature Photonics 1篇,Nature Physics 3篇, Nature Nanotechnology 4篇,Nature Communications 5篇, Science Advances 1篇,Advanced Materials 1篇,Phys. Rev. Lett. 2篇等。所发表论文累计被引用19000余次。王雷教授连续多年被科睿唯安(clarivate)评为全球“高被引用科学家”。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 16:28 , Processed in 0.115691 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表