找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 425|回复: 0
打印 上一主题 下一主题

[材料资讯] 雷霆课题组提出“掺杂态调控”实现n型有机电化学晶体管性能显著提升

[复制链接]

115

主题

126

帖子

206

积分

中级会员

Rank: 3Rank: 3

积分
206
跳转到指定楼层
楼主
发表于 2022-11-9 07:00:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
有机电化学晶体管(OECT)是一种基于有机半导体的三端器件(图1a)。在栅极(G)电压的驱动下,电解质中的离子进入/移出沟道,从而电化学氧化/还原掺杂有机半导体层,剧烈地改变源(S)、漏(D)电极之间的电流,从而实现栅极电压信号对源漏极电流信号的调制。有机电化学晶体管可以在水溶液中工作,操作电压较小(通常小于1V),且跨导(源漏电流对栅极电压的响应灵敏度)超过石墨烯等高迁移率材料,具有良好的生物器件界面和生物相容性。因此,有机电化学晶体管在生物化学传感器、神经接口器件和神经形态计算等领域有着广泛的应用,引起了人们越来越多的关注(图1b)。作为生物化学传感器,有机电化学晶体管可以检测汗液、泪液等生物流体中的代谢物(Na+、K+、葡萄糖、乳酸、皮质醇激素等),从而监测人体的生命健康,近期,还被成功应用于新冠病毒的检测。由于具备良好的生物器件界面,有机电化学晶体管可以作为神经电极和脑机接口,进行诊断和治疗。此外,有机电化学的工作原理和神经突触类似,可以代替传统的电子器件,用于类脑计算研究。
图1 a. 有机电化学晶体管器件结构示意图;b. 三种有机电化学晶体管应用:生物化学传感器、神经接口器件、神经形态计算
         然而,有机电化学晶体管的实际应用,仍受到材料层面的阻碍。相比于p型材料,n型材料在种类和性能两方面均远远落后,极大地限制了基于有机电化学晶体管的互补型逻辑电路的构筑和实际应用。受到有机场效应晶体管(OFET)材料设计的影响,传统n型有机电化学晶体管材料设计常常通过引入更多的缺电子基团来降低最低未占据分子轨道(LUMO)能级。然而,基于这种“低LUMO能级”设计策略的材料大多基于复杂的结构,合成步骤长且昂贵,对于性能的提升效果也相对有限。因此,需要一种简单且高效的高性能n型有机电化学晶体管材料的设计策略。
         针对这些挑战,北京大学材料科学与工程学院雷霆研究员课题组提出了新的n型有机电化学晶体管材料设计策略——“掺杂态调控”(图2a)。由于有机电化学晶体管在工作过程中整个半导体被电解质高度掺杂,因此器件工作状态下载流子的输运特性不能简单地由中性状态下的分子的性质决定,而应该由掺杂状态下分子的性质决定。通过结构设计,将电荷均匀的分布在聚合物骨架上,可以有效地将传统的p型聚合物转换为高性能的n型聚合物。基于这一概念,聚合物P(gTDPP2FT)(图2b)表现出创纪录的高n型有机电化学晶体管性能(图2c),其特性参数μC*达到54.8 F cm−1 V−1 s−1,开关响应时间缩短为1.75/0.15 ms。理论计算和对照实验表明,这种转变主要是由于电荷分布更加均匀、极化子更为稳定、带电状态下主链平面性和构象稳定性增强所致。该工作首次提出了理解并调控聚合物掺杂态下分子性质的方法和重要意义。相关工作以“Switching p-type to high-performance n-typeorganic electrochemical transistors viadoped state engineering”为题发表在Nature Communications上。
图2 a. 本工作设计的“掺杂态调控”策略。 b. P(gTDPP2FT)聚合物材料的结构式。 c. 目前n型有机电化学晶体管材料的性能对比,本工作的P(gTDPP2FT)展现出最高的迁移率和μC*值
        博士研究生李佩雲和博士后石军伟是该论文的共同第一作者,雷霆是通讯作者。
        上述研究工作得到国家自然科学基金、北京大学高性能计算平台,北京大学化学与分子工程学院分子材料与纳米加工实验室(MMNL)仪器平台和上海光源等的支持。
         文章来源:北京大学
        雷霆,博士,北京大学教授。于2004年9月至2008年6月在北京大学化学与分子工程学院学习,获理学学士学位。2008年9月至2013年6月在北京大学有机化学专业学习,获理学博士学位。2013年10月至2018年2月在斯坦福大学化工系从事博士后研究,师从美国工程院院士鲍哲南教授。2018年度“青年##计划”获得者。2018年3月加入北京大学工学院材料科学与工程系,任特聘研究员,博士生导师。主要从事有机高分子功能材料和其在电子、能源和环境科学中的应用研究,提出了可降解半导体材料和可降解电子器件的新设计策略,完成了基于碳材料和高分子材料的柔性电子器件的设计和加工,发展了具有生物医学应用的柔性器件,并应用于医学检测治疗和可穿戴设备中。在国际著名期刊Nature Energy、PNAS、JACS、Adv. Mater. 等杂志上发表高质量科研论文超过50篇,总引用超过3000次。申请中国和国际专利7项,已获授权4项,部分专利成果已实现规模化生产。






  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-20 00:05 , Processed in 0.088194 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表