找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1567|回复: 3
打印 上一主题 下一主题

[专家学者] 北京理工大学化学与化工学院曲良体

[复制链接]

60

主题

71

帖子

75

积分

注册会员

Rank: 2

积分
75
跳转到指定楼层
楼主
发表于 2018-4-3 11:18:33 | 显示全部楼层 |只看大图 回帖奖励 |倒序浏览 |阅读模式
曲良体,2004年博士毕业于清华大学化学系,曾任北京理工大学徐特立特聘教授,博士生导师,北京理工大学校学术委员会委员、第二届学部委员、学科责任教授。主要从事具有碳–碳共轭结构的纳微米材料研究,涉及碳纳米管、石墨烯、导电高分子等的可控制备、功能化修饰及其应用研究。在Science, Angew. Chem. Int. Ed., Adv. Mater., J. Am. Chem. Soc., NanoLett.等国际重要期刊发表论文140多篇,论文他引4000余次。受邀在Energy Environ. Sci.等撰写6篇综述论文,英文专著6章,国际国内发明专利10余项。1篇论文荣获2012年度“中国百篇最具影响国际学术论文”。在Science发表的研究成果“碳纳米管阵列仿生壁虎脚”,开启了纳米仿生领域的新篇章。
获得荣誉包括2007年SAMPE 国际会议优秀论文一等奖;2009年教育部“新世纪优秀人才”及第13届“霍英东基金”;2013年国家杰出青年基金获得者;2014年教育部“长江学者”特聘教授;2014年中青年科技创新领军人才。2014年教育部自然科学一等奖(第五)。
主持国家自然科学基金杰出青年基金、面上项目,国家重大基础研究发展(973)计划课题,军口预研项目等。担任中国材料研究学会纳米材料与器件分会第一届理事会理事,中国化学会青年化学工作者委员会委员,中国科学:材料科学编委,化学学报、应用化学编委等。

曲良体   教育部长江学者特聘教授,国家杰出青年基金获得者
北京理工大学化学学院北京海淀区中关村南大街5号  邮编:100081        
电子邮件: lqu@bit.edu.cn
Prof. Dr. Liangti Qu
School of Chemistry Beijing Institute ofTechnology
5 South Zhongguancun Street,  Haidian District, Beijing  100081, P. R. China
E-mail: lqu@bit.edu.cn  


代表性论文 (Selected publications):
49.Hu C.G., Chen X.Y., Dai Q.B., Wang M,and Qu L.T.*, Dai L.M.*, “Earth-abundant carboncatalysts for renewable generation of clean energy from sunlight andwater”, Nano Energy, 2017, 41, 367-376.
48.Han Q*, Chen N*, Zhang J,and Qu L.T.*, “Graphene/graphitic carbon nitride hybrids forcatalysis”, Materials Horizons, 2017, 4, 832-850.
47.Li C.X., Li Z.L., Cheng Z.H., Ding X.T.,Zhang J.*, Huang R.D.*, Qu L.T.*, “Functional CarbonNanomesh Clusters”, Adv. Funct. Mater., 2017, 27, 1701514.
46.Zhang P.P., Li J, Lv L.X., Zhao Y,and Qu L.T.*, “Vertically Aligned Graphene Sheets Membrane forHighly Efficient Solar Thermal Generation of Clean Water”,ACS nano,2017, 11, 5087-5093.
45.Han Q, Cheng Z.H., Gao J, Zhao Y*,Zhang Z.P.*, Dai L.M., and Qu L.T.*, “Mesh-on-MeshGraphitic-C3N4@Graphene for Highly Efficient Hydrogen Evolution”,Adv.Funct. Mater., 2017, 27, 1606352.
44.Zhao Y*, Han Q, Cheng Z.H., Jiang L,and Qu L.T.*, “Integrated graphene systems by laser irradiation foradvanced devices”, Nano Today, 2017,12, 14-30.
43.Liang Y, Zhao F, Cheng Z.H., Zhou Q.H.,Shao H.B.*, Jiang L, and Qu L.T.*, “Self-powered wearable graphenefiber for information expression”, Nano Energy, 2017, 32,329-335.
42.Zhao F, Wang L.X., Zhao Y, QuL.T.*, and Dai L.M.*, “Graphene Oxide Nanoribbon Assembly towardMoisture-Powered Information Storage”, Adv. Mater., 2017,29(3),1604972.
41. Wang X.P., Gao J, Cheng Z.H., ChenN, and Qu L.T.*, “A Responsive Battery with Controlled EnergyRelease”, Angew. Chem. Int. Ed., 2016,128(47), 14863-14867.
40. Han Q., Wang B., Gao J., and QuL.T.*, “Graphitic Carbon Nitride/Nitrogen-Rich Carbon Nanofibers: HighlyEfficient Photocatalytic Hydrogen Evolution without Cocatalysts”, Angew.Chem. Int. Ed., 2016, 55, 10849-10853.
39. Cheng H.H., Zhao F., Xue J.L., ShiG.Q., Jiang L., and Qu L.T.*,“One Single Graphene Oxide Film forResponsive Actuation”, ACS Nano, 2016, 10,9529-9535.
38. Jiang Y., Shao H.B., Li C.X., Xu T.,Zhao Y., Shi G.Q., Jiang L., and Qu L.T.*,“Versatile Graphene OxidePutty-Like Material”, Adv. Mater., 2016, 28(46), 10287-10292.
37. Zhao F, Liang Y, Cheng H.H., Jiang L,and Qu L.T.*, “Highly efficient moisture-enabled electricitygeneration from graphene oxide frameworks”, Energy Environ. Sci., 2016,9(3), 912-916.
36. Cheng H.H., Ye M.H., Zhao F, Hu C.G.,Zhao Y, Liang Y, Chen N, Chen S.L., Jiang L, and Qu L.T.*, “AGeneral and Extremely Simple Remote Approach towardGraphene Bulks with In SituMultifunctionalization”, Adv. Mater., 2016, 28(17),3305-3312.
35. Zhao F, Zhao Y, Cheng H.H. and QuL.T.*, “A Graphene Fibriform Responsor for Sensing Heat, Humidity, andMechanical Changes”, Angew. Chem. Int. Ed.,2015, 54(49),14951–14955.
34. Han Q., Wang B., Zhao Y., ChengH.H. and Qu L.T.*, “A Graphitic-C3N4 "Seaweed"Architecture for Enhanced Hydrogen Evolution”, Angew. Chem. Int. Ed.,2015, 54(39), 11433–11437.
33. Zhao F, Cheng H.H., Zhang Z.P., Jiang Land Qu L.T.*, “Direct Power Generation of a Graphene Oxide Filmunder Moisture”, Adv. Mater., 2015, 27(29), 4351–4357.
32. Dai L.M.*, Xue Y.H., Qu L.T.*,Choi H.J., and Baek J.B.*, “Metal-Free Catalysts for Oxygen ReductionReaction”, Chem. Rev., 2015, 115(11), 4823–4892.
31. Hu C.G., Song L, Zhang Z.P.*, Chen N,Feng Z.H., and Qu L.T.*, “Tailored Graphene Systems forUnconventional Applications in Energy Conversion and Storage Devices”, EnergyEnviron. Sci., 2015, 8(1), 31–54.
30. Zhao Y, Zhao F, Wang X.P., X u C.Y.,Zhang Z.P., Shi G.Q. and Qu L.T.*,“Graphitic Carbon NitrideNanoribbons: Graphene-Assisted Formation and Synergic Function for HighlyEfficient Hydrogen Evolution”, Angew. Chem. Int. Ed., 2014,53, 13934–13939.
29. Zhao F, Cheng H.H., Hu Y, Song L, ZhangZ.P., Jiang L, and Qu L.T.*, “Functionalized Graphitic CarbonNitride for Metal-free, Flexible and Rewritable Nonvolatile Memory Device viaDirect Laser-Writing”, Sci. Rep. 2014, 4, 5882.
28. Cheng H.H., Hu C.G., Zhao Y and QuL.T.*, “Graphene fiber: a new material platform for uniqueapplications”, NPG Asia Materials (2014) 6, e113. (Review)
27. Hu C.G., Zheng G.P., Zhao F, ShaoH.B.*, Zhang Z.P., Chen N and Jiang L, Qu L.T.*, "A powerful approach tofunctional graphene hybrids for high performance energy-relatedapplications”, Energy Environ. Sci., 2014, 7 (11),3699–3708.
26. Zhao Y., Hu C.G., Song L., Wang L.X.,Shi G.Q. and Dai L.M., Qu L.T.*, “Functional Graphene Nanomesh Foam”,EnergyEnviron. Sci., 2014, 7, 1913–1918.
25. Cheng H.H., Hu Y.,Zhao F., Dong Z.L., Wang Y.H., Chen N., Zhang Z.P.,Qu L.T.*, “Moisture-Activated Torsional Motor of Graphene Fiber”, Adv.Mater., 2014, 26, 2909–2913.
24.  Zhang J., Zhang Z.P.*,Chen N., Qu L.T.*, “Environmentally responsive graphenesystems”, Small, 2014, DOI: 10.1002/smll.201303080. (Review)
23. Zhao Y., Song L.,Zhang Z.P.* Qu L.T.*,“Stimulus-responsive Graphene SystemstowardsActuator Applications”, Energy Environ. Sci., 2013, 6,3520–3536. (Review)
22. Cheng H., Liu J., Zhao Y., Hu H.G.,Zhang Z.P., Chen N., Jiang L., Qu L.T.*, “Graphene Fibers with PredeterminedDeformation as Moisture-Triggered Actuators and Robots”, Angew.Chem. Int. Ed., 2013, 52, 10482–10486.
21. Hu C.G., Zhai X.Q.,Liu L.L., Zhao Y., Jiang L., Qu L.T.*, “SpontaneousReduction and Assembly of Graphene oxide into Three-Dimensional GrapheneNetwork on Arbitrary Conductive Substrates”, Sci. Rep. 2013,3, 2065; DOI:10.1038/srep02065.
20.  Meng Y.N., Zhao Y.,Hu C.G., Cheng H.H., Hu Y., Zhang Z.P., Shi G.Q.,Qu L.T.*, “All-Graphene Core-Sheath Microfibers for All-Solid-State,Stretchable Fibriform Supercapacitors and Wearable Electronic Textiles”, Adv.Mater., 2013, 25(16), 2326–2331.
19.  Zhao Y., Jiang C.C.,Hu C.G., Dong Z.L., Xue J.L., Meng Y.N.,Zheng N.,Chen P.W., Qu L.T.*, “Large-Scale Spinning Assembly of Neat,Morphology-Defined, Graphene-Based Hollow Fibers”, ACS Nano, 2013,7 (3), 2406–2412.
18.  Zhao Y., Liu J.,Hu Y., Cheng H., Hu C., Jiang C., Jiang L.,Cao A.Y., Qu L.T.*, “Highly Compression-Tolerant SupercapacitorBased on Polypyrrole-mediated Graphene Foam Electrodes”, Adv. Mater.,2013, 25(4), 591–595.
17.  Hu C.G., Zhao Y., Cheng H., WangY., Dong Z., Jiang C., Zhai X., Jiang L., Qu L.T.*, “Graphene Microtubings:Controlled Fabrication and Site-specific Functionalization”, NanoLett., 2012, 12 (11), 5879–5884.
16. Zhao Y., Hu C.G., Hu Y., Cheng H.H.,Shi G.Q., Qu L.T.*, “A Versatile, Ultralight,Nitrogen-doped Graphene Framework”, Angew. Chem. Int. Ed.,2012, 124(45), 11533–11537. (Inside Cover)
15. Zhang Z. P.*, Zhang J., Chen N., QuL.T.*, “Graphene Quantum Dots: An Emerging Material for the Energy-RelatedApplications and Beyond”, Energy Environ. Sci., 2012, 5,8869–8890. (Review)
14.  Hu C.G., Cheng H.H., Zhao Y., HuY., Liu Y., Dai L.M., Qu L.T.*, “Newly-Designed Complex Ternary Pt/PdCuNanoboxes Anchored on Three-Dimensional Graphene Framework for Highly EfficientEthanol Oxidation”, Adv. Mater., 2012,24(40), 5493–5498.
13.  Dong Z.L., Jiang C.C., ChengH.H., Zhao Y., Shi G.Q., Jiang L., Qu L.T.*, “Facile fabrication of light,flexible and multifunctional graphene fibers”, Adv. Mater.,2012, 24 (14), 1856–1861.
12.  Li Y., Zhao Y., Cheng H., Hu Y.,Shi G.Q., Dai L.M., Qu L.T.*, “Nitrogen-doped graphene quantum dots withoxygen-rich functional groups”, J. Am. Chem. Soc., 2012 134(1), 15–18.
11.  Cheng H., Zhao Y.,Fan Y.Q., Xie X.J., Qu L.T.*,Shi G.Q.*, “Graphene-quantum-dot assembled nanotubes: a new platformfor efficient Raman enhancement”, ACS Nano,2012, 6(3), 2237–2244.
10.  Li Y., Hu Y., Zhao Y., Shi G. Q.,Deng L., Hou Y. B., Qu L.T.*, An electrochemical avenue togreen-luminescent graphene quantum dots as potential electron-acceptors forphotovoltaics, Adv. Mater., 2011, 23, 776–780.
9.  Qu L.T.*, Vaia R.A., Dai L.M.*,Multilevel, Multicomponent Microarchitectures of Vertically-Aligned CarbonNanotubes for Diverse Applications, ACS Nano, 2011, 5(2):994–1002.
8.  Xie X. J., Qu, L.T.*, Zhou C., LiY., Zhu J., Bai H., Shi G. Q.* and Dai L. M.*, An AsymmetricallySurface-Modified Graphene Film Electrochemical Actuator, ACS Nano,2010, 4, 6050–6054.
7.  Qu L.T., Liu Y., BaekJ. B. and Dai L. M., Nitrogen-doped graphene as efficient metal-freeelectrocatalyst for oxygen reduction in fuel cells, ACS Nano,2010, 4 (3), 1321–1326.
6.  Qu L.T., Dai L. M.,Stone M., Xia Z. H., Wang Z. L., Carbon nanotube arrays with strong shearbinding-on and easy normal lifting-off, Science, 2008, 322,238–242.
5. Qu L.T., Du F., Dai L. M.,Preferential syntheses of semiconducting vertically-aligned single-walledcarbon nanotubes for direct use in FETs, Nano Lett., 2008,8, 2682–2687.
4.  Qu L.T., Dai L. M.,Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube Dry Adhesives withUnique Electrical and Thermal Properties, Adv. Mater., 2007,19, 3844–3849.
3. QuL.T., Dai L. M., OsawaE., Shape/size-controlled syntheses of metal nanoparticles forsite-selective modification of carbon nanotubes, J. Am. Chem. Soc.,2006, 128 (16): 5523–5532.
2. Qu L.T., Dai L. M.,Substrate-enhanced electroless deposition of metal nanoparticles on carbonnanotubes, J. Am. Chem. Soc., 2005, 127 (31): 10806–10807.
1.  Qu L.T., Shi G. Q., WuX. F., Fan B., Facile route to silver nanotubes, Adv. Mater.,2004, 16 (14): 1200–1203.


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

60

主题

71

帖子

75

积分

注册会员

Rank: 2

积分
75
沙发
 楼主| 发表于 2018-4-3 11:23:35 | 显示全部楼层
北京理工大学化学余化工学院曲良体联合美国德州大学奥斯汀分校的Guihua Yu课题组、美国科罗拉多大学Ronggui Yang课题组通力合作,发展了一种多级次纳米凝胶材料,可以实现更高效的太阳光蒸发水,进行海水淡化!
       这种纳米凝胶材料由PVA和PPy组成,两者是单独的太阳能水汽蒸发模块。由这种纳米凝胶材料从太阳能光中转化的能量可以将PVA网络分子级孔道中的水分实时气化,然后从凝胶骨架中蒸发出来。
测试表明,浮动的纳米凝胶材料打破现有记录,实现了3.2 kg m-2 h-1的转化速率。(1 sun,94%)。每个平方的纳米凝胶材料可以实现每天蒸发纯化18-23升卤水。
       研究人员认为,之所以能实现如此高的水蒸发速率,主要得益于在太阳光照射下,分子级网孔中水蒸发的潜热大幅降低。
Fei Zhao, Ronggui Yang, Liangti Qu, Guihua Yu et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology 2018.

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-23 15:33 , Processed in 0.093086 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表