找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 591|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘伟峰:仿蜘蛛丝高强高韧全降解生物质/高分子复合材料

[复制链接]

108

主题

262

帖子

338

积分

中级会员

Rank: 3Rank: 3

积分
338
跳转到指定楼层
楼主
发表于 2018-12-13 09:03:53 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
轻质高分子材料广泛应用于各个领域。与此同时,废塑料造成的“白色污染”问题对生态环境和人类健康也造成了极大的威胁。开发可生物降解高分子材料是解决“白色污染”问题的有效途径之一。然而,可生物降解材料的强度和韧性不匹配极大地限制了其推广应用。制备高强度同时又具有高韧性的轻质高分子材料一直是一项巨大的挑战。
自然界中的蜘蛛丝具有优异的刚性和韧性平衡,其拉伸强度最高可超过1GPa,断裂韧性可达150~190J/g。研究显示,其优异的性能是由于多层级组装的纳米相分离结构和纳米晶相受限区域内密集有序的动态氢键作用。这种动态氢键作为一类高效的能量牺牲键,可以在拉伸过程中动态断裂与重构,伴随纳米颗粒相的变形,从而在分子尺度上耗散能量,赋予材料超强的韧性。虽然近年来国内外大量研究人员开展了蜘蛛丝、贻贝足丝等仿生材料的研究,通过向可降解的聚乙烯醇中添加纳米碳材料(例如石墨烯、氧化石墨烯、碳纳米管、碳量子点等)可以实现增强,但复合材料韧性却急剧下降;也有报道通过添加三聚氰胺、改性的SEBS嵌段共聚物等构筑动态氢键作用实现增强和增韧,但是这些方法要么制备过程复杂、成本昂贵,要么降低了PVA材料的绿色可降解特性。
受蜘蛛丝的强韧机理启发,华南理工大学生物质资源化工团队的刘伟峰副研究员邱学青教授以亚硫酸盐制浆产物木质素磺酸盐为原料,采用简单绿色的水溶液共混工艺,制备了高强高韧的木质素/PVA复合薄膜,拉伸强度和杨氏模量分别达到98.2 MPa和3.37 GPa,拉伸断裂韧性则高达173 J/g,是迄今为止文献中报道的韧性最高的PVA复合材料,该韧性已达到了天然蜘蛛丝的韧性水平
研究人员利用木质素磺酸盐(LA)两亲性的分子结构,在水溶液中能自组装形成纳米微球,均匀分散在PVA基体中形成纳米微相分离结构。TEM分析发现,两亲性的LA分子可在PVA基体中分相形成4 nm左右的原生纳米粒子,这些原生纳米粒子进一步组装聚集形成400-500 nm左右的次级纳米球;外力作用下,次级纳米球随应变增加而逐步被拉开分散,散落成4 nm左右的原生粒子,研究人员将这一过程定义为应变诱导分散过程。在应变诱导分散过程中,LA原生纳米粒子与PVA基体之间通过大量的动态氢键作用,不断地耗散能量,抑制应力集中。同时在拉伸过程中结合小角光散射(SAXS)分析,发现LA原生纳米粒子与PVA基体之间的受限氢键作用,可有效约束PVA的无定型链段,促进链段的延伸和取向结晶。在整个PVA/LA复合膜体系,纳米微相分离、应变诱导分散和受限动态氢键协同增强被认为是PVA复合膜强度和韧性同时提高的原因。
由于木质素具有优异的紫外吸收功能,PVA中仅需添加2~5%的LA即可实现对紫外线全波段的吸收屏蔽,同时还能保持对可见光较好的透过率。此外,LA的加入明显提高了PVA的热分解温度,降低了PVA的熔点,拓宽了PVA可熔融加工的窗口。
木质素是植物中仅次于纤维素的第二大生物质资源,来源广泛。我国每年造纸和生物乙醇工业会产生超过2000万吨的工业木质素,但98%以上的工业木质素被直接燃烧,资源的有效利用率极低。该方案采用价格低廉同时又是天然可降解的绿色木质素为增强剂,应用于可降解聚乙烯醇材料,为制备高强高韧全生物降解高分子复合材料提供了一种经济可行的思路,所得木质素/聚乙烯醇复合材料有望应用于可降解塑料、组织工程和紫外线屏蔽生物材料等领域。
该研究成果“Biomimetic Supertough and Strong Biodegradable Polymeric Materials with Improved Thermal Properties and Excellent UV-Blocking Performance”近期发表在国际著名材料期刊Advanced Functional Materials(IF=13.325),论文通讯作者为华南理工大学化工学院生物质资源化工团队的刘伟峰副研究员,团队负责人邱学青教授为论文共同通讯作者,博士研究生张晓为论文第一作者。
刘伟峰副研究员长期从事烯烃聚合反应工程、热塑性弹性体、智能高分子、生物质/高分子复合材料领域的研究,在烯烃聚合反应工程领域取得多项重要工业成果。该工作阐述了木质素在绿色功能高分子材料中应用的重要性,证实了工业木质素分子结构的特殊作用,为今后的木质素/高分子复合材料的理性设计提供了借鉴。
论文链接地址:
https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201806912

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-12 11:07 , Processed in 0.084191 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表