找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 397|回复: 0
打印 上一主题 下一主题

[专家学者] 青岛科技大学刘勇

[复制链接]

110

主题

114

帖子

143

积分

注册会员

Rank: 2

积分
143
跳转到指定楼层
楼主
发表于 2022-1-13 17:21:24 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
刘勇,青岛科技大学材料科学与工程学院特聘副教授,研究生导师。


邮箱:yong.liu@qust.edu.cn


教育及工作经历:
2018年11月至今,青岛科技大学,材料科学与工程学院,特聘副教授
2016.07-2018.07,博士后,Texas Tech university (美国德州理工大学)  
2011.07-2016.07,攻读材料与光电子专业博士学位,华东师范大学        
2007.09-2011.07,攻读材料化学专业学士学位,内蒙古师范大学      


主要研究方向:
1.基于静电纺丝定向构筑金属纳米团簇阵列;
2.抗菌&电容去离子脱盐技术(高性能薄膜电极材料、流动式电极电容去离子技术);
3.金属纳米团簇/二维片层材料复合物设计和电化学应用;
4.水系超级电容器。


相关论文
  Before QUST  
29. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial cellulose for highly-efficient capacitive deionization.
      Y. Li, Y. Liu , M. Wang, X. Xu, T. Lu, C. Q. Sun and L. Pan, Carbon 2018, 130, 377-383.
28. Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization.
      L. Zhang, Y. Liu, T. Lu and L. Pan, J. Electroanal. Chem., 2017.
27. Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization.
      Y. Liu, J. Ma, T. Lu and L. Pan, Sci. Rep., 2016, 6, 32784.
26. From metal-organic frameworks to porous carbons: A promising strategy to prepare high-performance electrode materials for capacitive deionization.
      M. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, and L. Pan, Carbon 2016, 108, 433.
25. In situ construction of carbon nanotubes/nitrogen-doped carbon polyhedra hybrids for supercapacitors.
      X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu, and L. Pan, Energy Storage Materials 2016, 5, 132.
24. Metal-organic framework-engaged formation of a hierarchical hybrid with carbon nanotube inserted porous carbon polyhedra for highly efficient capacitive deionization.
      X. Xu, M. Wang, Y. Liu, T. Lu, and L. Pan, J. Mater. Chem. A 2016, 4, 5467.
23. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization.
      Y. Liu, X.T. Xu, T. Lu, Z. Sun, and K. Pan, RSC Adv., 2015, 5, 34117-34124.
22. Shuttle‐like Porous Carbon Rods from Carbonized Metal–Organic Frameworks for High‐Performance Capacitive Deionization.
      X. Xu, J. Li, M. Wang, Y. Liu, T. Lu, L. Pan, Chem Electro Chem. 2016, 3, 993.
21. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization.
      X. Xu, Y. Liu, M. Wang, C. Zhu, T. Lu, R. Zhao, and L. Pan, Electrochim. Acta. 2016, 193, 88.
20. Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V.
      X. Xu, M. Wang, Y. Liu, T. Lu, and L. Pan, ACS Sustainable Chemistry & Engineering, 2016, 5, 189.
19. Ultra-thin carbon nanofiber networks derived from bacterial-cellulose for capacitive deionization.
      Y. Liu, T. Lu, Z. Sun, and L. Pan, J. Mater. Chem. A, 2015, 3, 8693-8700.
18. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability.
      Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun and L. Pan, J. Mater. Chem. A, 2015, 3, 17304-17311.
17. Porous carbon spheres via microwave-assisted synthesis for capacitive deionization.
      Y. Liu, L.K. Pan, T. Q. Chen, X. T. Xu, T. Lu, Z. Sun, and D. Chua, Electrochim. Acta, 2015, 151, 489-496.
16. Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization.
      Y. Liu, T. Chen, T. Lu, Z. Sun, D.H. Chua, and L. Pan, Electrochim. Acta, 2015, 158, 403-409.
15. Metal–organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Y. Liu, X. Xu, M. Wang, T. Lu, Z. Sun and L. Pan, Chem. Commun., 2015, 51, 12020-12023.
14. Review on carbon-based composite materials for capacitive deionization.
      Y. Liu, C.Y. Nie, X.J. Liu, X.T. Xu, Z. Sun, L.K. Pan, RSC Adv., 2015, 5, 15205-15225.
13. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
      X. T. Xu, L. K. Pan, Y. Liu, T. Lu, Z. Sun, D. H. Chua, Sci. Rep., 2015, 5, 8458.
12. Enhanced capacitive deionization performance of graphene by nitrogen doping.
      X. T. Xu, L.K. Pan, Y. Liu, T. Lu, and Z. Sun, J. Colloid Interface Sci., 2015, 445, 143-150.
11. Carbon microspheres via microwave-assisted synthesis as counter electrodes of dye-sensitized solar cells.
      H. Sun, T. Chen, Y. Liu, X. Hou, L. Zhang, G. Zhu, Z. Sun, and L. Pan, J. Colloid Interface Sci. 2015, 445, 326.
10. Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization.
      Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, and D. H. C. Chua, J. Mater. Chem. A 2014, 2, 20966-20972.
9. Enhanced desalination efficiency in modified membrane capacitive deionization by introducing ion-exchange polymers in carbon nanotubes electrodes.
    Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, D.H. Chua, Electrochim. Acta, 2014, 130, 619-624.
8. Carbon aerogels electrode with reduced graphene oxide additive for capacitive deionization with enhanced performance.
    Y. Liu, C.Y. Nie, L.K. Pan, X.T. Xu, Z. Sun, and D.H. Chua, Inorg. Chem. Front., 2014, 1, 249-255.
7. Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance.
    T. Q. Chen, Y. Liu, L. K. Pan, T. Lu, Y. F. Yao, Z. Sun, D.H. Chua, and Q. Chen, J. Mater. Chem. A 2014, 2, 4117-4121.
6. Electrosorption of LiCl in different solvents by carbon nanotube film electrodes.
    Y. Liu, L.K. Pan, X.T. Xu, T. Lu, Z. Sun, RSC Adv., 2013, 3, 16932-16935.
5. Carbon nanotube and carbon nanofiber composite films grown on different graphite substrate for capacitive deionization.
    Y. Liu, H.B. Li, C.Y. Nie, L.K. Pan, Z. Sun, Desalin Water Treat, 2013, 51, 3988-3994.
4. Enhanced capacitive behavior of carbon aerogels/reduced graphene oxide composite film for super-capacitors.
    C. Y. Nie, D. Liu, L.K. Pan, Y. Liu, Z. Sun, and J. Shen, Solid State Ionics, 2013, 247, 66-70.
3. TiO2-Au composite for efficient UV photocatalytic reduction of Cr (VI).
    X. Liu, T. Lv, Y. Liu, L. Pan, Z. Sun, Desalin Water Treat. 2013, 51, 3889.
2. Reduced graphene oxide and activated carbon composites for capacitive deionization.
    H.B. Li, L.K. Pan, C.Y. Nie, Y. Liu, and Z. Sun, J. Mater. Chem., 2012, 22, 15556-15561.
1. Electrophoretic deposition of carbon nanotubes–polyacrylic acid composite film electrode for capacitive deionization.
    C. Y. Nie, L.K. Pan, Y. Liu, H. Li, T.Q. Chen, T. Lu, and Z. Sun, Electrochim. Acta, 2012, 66, 106-109.


专利项目
一种基于流动式电极的高效膜电容去离子装置 (专利授权号ZL201420846013.6),刘勇,孙卓,潘丽坤,徐兴涛

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-6 03:00 , Processed in 0.087868 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表