找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 394|回复: 0
打印 上一主题 下一主题

[材料资讯] 徐俞、徐科等在石墨烯调控的氮化镓远程外延机理研究方面取得进展

[复制链接]

20

主题

28

帖子

32

积分

新手上路

Rank: 1

积分
32
跳转到指定楼层
楼主
发表于 2022-2-10 09:03:58 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
二维 (2D) 材料,特别是石墨烯和氮化物的异质集成,为半导体器件提供了新的机遇,在制备柔性可穿戴设备,以及可转移电子和光子器件领域有广泛的应用前景。由于石墨烯表面自由能低,氮化物在石墨烯表面不易成核,采用等离子体预处理或者生长缓冲层的方法难以获得高质量的单晶氮化物。最近,一种新的外延技术——远程外延有望解决这一难题。该技术是利用石墨烯的“晶格透明性”,衬底和外延层产生远程的静电相互作用,通过这种相互作用,外延层透过石墨烯可以“复制”衬底的晶格信息,从而保证外延层的晶格取向一致性。然而,关于氮化物远程外延的生长机制和界面作用关系的相关报道还较少。
  中国科学院苏州纳米技术与纳米仿生研究所研究团队在《ACS Applied Materials & Interfaces》期刊上发表了题为“Long-Range Orbital Hybridization in Remote Epitaxy: The Nucleation Mechanism of GaN on Different Substrates via Single-Layer Graphene”的文章。文章第一作者为博士研究生屈艺谱,合作者为徐俞副研究员、徐科研究员以及苏州大学曹冰教授。该团队采用金属有机物化学气相沉积法(MOCVD)在两种覆盖单层石墨烯(SLG)的极性衬底(Al2O3和AlN)上实现了氮化镓成核层(GaN NLs)的远程外延。研究发现,衬底极性对石墨烯上GaN的成核密度,表面覆盖率和扩散常数起着关键作用。考虑到表面覆盖和衬底污染引起的成核信息差异,通过缩放的成核密度校正了这种误差,得到了衬底极性和GaN成核密度的对应关系。结晶特性分析表明,衬底和外延层的界面外延关系不受单层石墨烯的影响,与传统外延的取向关系一致。为了揭示成核信息差异背后的物理机理,通过理论计算作者发现衬底增强了单层石墨烯上的Ga和N原子的吸附能,且极性较强的AlN相比Al2O3的吸附能更大,AlN和吸附原子Ga之间存在更高的差分电荷密度(CDD)。进一步通过分波态密度(PDOS)分析发现,尽管吸附原子Ga和衬底相距4-5埃,Al2O3和AlN中Al-3p和Ga-4p轨道在费米能级附近仍存在轨道杂化。作者认为在远程外延中,单层石墨烯的存在不影响衬底和吸附原子之间的化学相互作用,这种远程轨道杂化效应正是在极性衬底上远程外延GaN NLs的本质。通过导电胶带可以轻松剥离GaN NLs,而且剥离后的衬底表面没有机械损伤,有望发展一种高质量衬底的低成本制备技术。
  图1. SLG/Al2O3和SLG/AlN两种衬底的GaN NLs的SEM图,不同的量化指标分析了成核信息的差异。
  综上,该研究工作讨论了在石墨烯调控的氮化镓远程外延机理,创新性的提出了远程轨道杂化的概念,充分探讨了GaN和衬底之间的界面关系和界面耦合特性,揭示了远程外延的物理和化学机理,为快速、大面积制备单晶GaN薄膜拓宽了思路。
  这项工作得到了国家自然科学基金国家重点项目(No. 61734008,No. 62174173)的资助。
  论文链接 :https://pubs.acs.org/doi/10.1021/acsami.1c18926


       文章来源:苏州纳米所
       徐科,研究员、博士生导师,国家杰出青年基金获得者,中组部##计划入选者。1988~1995年就读于西安交通大学,获硕士学位,1998年于中科院上海光学精密机械研究所获博士学位。1999~2002年在日本千叶大学光电子研究中心做博士后,2002~2004年在日本科学技术振兴事业团,参加超高速省电力高性能纳米器件/系统研发项目,2004~2006年任教于北京大学,2006年起加入中科院苏州纳米所,任测试分析平台主任。曾荣获2007年“苏州工业园区首届科技领军人才”称号、2008年“首届姑苏创新创业人才”、“江苏省双创人才”称号、2010年荣获第十三届中国科协“求是杰出青年奖”、2011年苏州市市长奖、2012年入选国家“##计划”(创业类),2012年荣获全国产学研合作创新成果奖、中国科学院国际合作青年科学家奖,2013年获得国家杰出青年基金资助,2013年苏州市魅力科技人物。现任“863”计划新材料领域主题专家、国家纳米标准委员会委员。  

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-7 20:11 , Processed in 0.088329 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表