找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 223|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈人杰等在锂金属电池固态电解质界面研究中取得进展

[复制链接]

77

主题

92

帖子

159

积分

注册会员

Rank: 2

积分
159
跳转到指定楼层
楼主
发表于 2023-4-25 08:00:00 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
近日,北理工材料学院陈人杰课题组提出了一种基于原位冷粘合方法制备功能性混合导电层改善氧化物固态电解质界面的新策略。相关成果以“Constructing a Uniform and Stable Mixed Conductive Layer to Stabilize the Solid-State Electrolyte/Li Interface by Cold Bonding at Mild Condition”为题,发表于著名期刊Advanced Materials。材料学院硕士研究生陈怡为该论文的第一作者,陈人杰教授和钱骥研究员为论文的通讯作者。
       固态锂金属电池被认为是最有前途的下一代电池。具体而言,石榴石型电解质(LLZ)因其出色的离子电导率(室温下~10-4 S cm-1)以及与锂金属的良好稳定性而引人注目。然而,由于LLZ与锂不亲和,LLZ表面的Li润湿性较差,导致LLZ/Li界面的固体接触差,界面电阻高。此外,在循环过程中易发生LLZ与锂金属之间的副反应引起LLZ结构损伤以及锂穿透LLZ引起电池短路。这些问题降低了LLZ的性能,限制了LLZ的应用。
       鉴于此,北京理工大学陈人杰教授,钱骥研究员等人通过使用原位冷粘合方法在常温下制备了由Li3N和Li-In合金组成的混合导电层(RT-MCL)用于改善LLZ/Li界面。该混合导电层对锂金属稳定,可以有效保护锂金属表面,抑制锂金属的破碎;同时,其具有的高Li+扩散系数可以诱导锂金属的均匀沉积,使MCL能够承受较大的体积变化。因此,该混合导电层能有效抑制界面副反应,保护LLZ的晶体结构,同时有效促进锂金属的均匀锂沉积,抑制锂枝晶的生长。
更重要的是,原位冷粘合策略可以在室温下实现LLZ与Li的紧密粘合,避免了文献中常用的在高温下利用熔融金属锂反应形成MCL(HT-MCL)的方法来提升LLZ/Li界面。与熔融Li的使用相比,在室温下使用固体Li能够有效消除高温下处理金属锂可能发生的安全问题,提高样品制备的可操作性,降低能耗,有利于保持LLZ的界面稳定性和结构完整性,突出了该技术在LLZ/Li界面合理设计和优化方面的巨大潜力。
       基于RT-MCL-LLZ的锂对称电池的极限电流密度高达1.8 mA cm-2,并且电池在0.5 mA cm-2的电流密度下表现出稳定的循环性能(循环时间超过2000小时)和较小的极化电压。Li/RT-MCL-LLZ/LiFePO4全电池在室温下0.2C(1C = 170 mAh g-1)循环100次后仍保持高可逆容量(> 160 mAh g-1)。这些优异的电化学性能表明,冷粘合法构建的RT-MCL在优化LLZ电解质与锂金属负极之间的界面方面具有显著的效果。
       总而言之,本文报告了一种新的冷粘合策略,能简单而有效构筑混合导电层作为LLZ/Li界面。这种新方法基于预沉积InN层和锂金属在室温下的原位转化反应,在形成MCL上相比热粘合策略具有巨大的优势。所得到的RT-MCL能促进锂金属的均匀锂沉积,抑制锂枝晶的生长,同时也能有效抑制界面副反应,保护LLZ的晶体结构,为多功能化固态电解质/锂金属界面的研究发展提供了新的思路,也为固态电解质界面修饰改性开拓了新的方法策略。
        文献信息:Yi Chen, Ji Qian*, Xin Hu, Yitian Ma, Yu Li, Tianyang Xue, Tianyang Yu, Li Li, Feng Wu, Renjie Chen*. Constructing uniform and stable mixed conductive layer to stabilize the solid-state electrolyte/Li interface by cold bonding at mild conditions (2023).
       全文链接: https://onlinelibrary.wiley.com/doi/10.1002/adma.202212096


       附作者简介:
       钱骥,材料学院特别研究员,博导。入选第八届中科协青年人才托举工程,2022年度山东省优秀青年科学基金项目(海外),和2018年“博士后国际交流计划”派出项目,作为负责人承担国家自然科学基金青年项目,山东省重点研发项目子课题,并作为技术骨干参与国家973计划、国家重点研发计划、北京市科委重大科技项目、国家自然科学基金、美国能源部项目等;获得第一届全国博士后创新创业大赛总决赛海外(境外)赛铜奖。共参与发表学术论文60余篇,总被引用超过3300次,H因子33(Google Scholar),其中以第一作者或通讯作者发表SCI论文18篇,包括Nature Nanotechnology, Advanced Materials, Science Advances, Materials Today, Advanced Energy Materials, Advanced Functional Materials, ACS Nano, Nano Energy, Energy Storage Materials等;授权发明专利6项,含美国专利1项。
        陈人杰,材料学院教授、博导,国家部委能源专业组委员、中国材料研究学会理事(能源转换与存储材料分会秘书长)、中国固态离子学会理事、国际电化学能源科学院(IAOEES)理事、中国化工学会化工新材料专业委员会委员、中国电池工业协会全国电池行业专家。主要从事多电子高比能二次电池新体系及关键材料、新型离子液体及功能复合电解质材料、特种电源用新型薄膜材料与结构器件、绿色二次电池资源化再生等方面的教学和科研工作。主持承担了国家自然科学基金项目、国家重点研发计划项目、“863”计划项目、中央在京高校重大成果转化项目、北京市科技计划项目等课题。在Chemical Reviews、Chemical Society Reviews、National Science Reviews、Advanced Materials、Nature Communications、Angewandte Chemie-International Edition、Advanced Functional Materials、Energy Storage Materials等期刊发表SCI论文300余篇;申请发明专利118项,获授权50项;获批软件著作权12项,出版学术专著2部。获得国家技术发明二等奖1项、部级科学技术一等奖5项。入选教育部长江学者特聘教授、北京高等学校卓越青年科学家、中国工程前沿杰出青年学者、英国皇家化学学会会士、科睿唯安 “全球高被引科学家”。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖2
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-27 11:22 , Processed in 0.086877 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表