找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 2903|回复: 9
打印 上一主题 下一主题

[专家学者] 中国科学院金属研究所成会明

  [复制链接]

10

主题

18

帖子

26

积分

新手上路

Rank: 1

积分
26
楼主
发表于 2019-4-9 02:05:32 | 显示全部楼层
中国科学院深圳先进技术研究院的唐永炳,清华-伯克利深圳学院的成会明和美国俄勒冈州立大学的纪秀磊(共同通讯)作者等人,回顾了双离子电池(DIB)的发展历史和现状,分析DIB中正极中阴离子插层机理;负极的插层、合金化和动力学反应机制;分析了低成本、高性能DIB的发展前景和研究策略。相关成果以“Beyond Conventional Batteries: Strategies towards Low-Cost Dual-Ion Batteries with High Performances”为题发表在Angewandte Chemie-International Edition上。


DIB是一种超越传统电池的新型电池系统。本文概述了DIB的发展历程和反应机制,提出了发展策略。本文分析了DIB中涉及的反应动力学,包括正极的阴离子嵌入机理,阳离子嵌入,负极的合金化动力学。讨论了DIB的成本,电极材料的结构设计和新型电极材料的开发。


(1)比容量和能量密度不能满足要求。阴离子的离子半径(TFSI为3.9 Å,PF6-为4.36 Å,AlCl4-为5.28 Å)和间隙位置不足,导致理论比容量低(C20PF6为112 mAhg-1)和能量密度低。因此,进一步提高正极的比容量和提高DIB的能量密度是首要任务。可能的提升策略是:a)开发高比容量的碳质材料;b)探索分层结构的替代材料,;c)引入高比容量的正极;d)探索新型的多价阴离子。
(2)非锂阳离子的反应动力学相对较差。DIB的电化学性能,取决于阳离子的反应动力学,受到非锂阳离子的离子半径的限制(Na+为1.02 Å,K+为1.38 Å,Ca2+为1.00 Å)。因此,采取有效措施改善负极与非锂阳离子可逆合金化的反应动力学是必不可少的,这对于开发高性能的低成本DIB具有重要意义。解决方案包括:a)负极材料的结构设计和改进;b)开发新型高容量负极材料;c)使用优异动力学的新型反应机理。
(3)低成本电解质盐的溶解度有限。电解质是活性离子的唯一来源,作为DIB中活性材料的一部分。因此,开发高浓度电解质是解决该问题的可行方法。可能的策略如下:a)开发高溶解度电解质盐;b)探索合适的溶剂以促进电解质盐的溶解;c)利用助溶剂来改善溶解性电解质盐;d)探索高浓度的含水系统。
(4)库仑效率相对较低。DIB的另一个关键挑战是在前几个循环中相对较低的库仑效率。可能的改进策略如下:a)开发宽电压窗口的稳定电解质;b)寻找电解质添加剂,增加电解质的分解电压并提高SEI薄膜的稳定性;c)电极的表面改性;d)开发低电位的新型负离子阴极。
(5)缺乏对反应动力学的深入理解。作为一种新型电池系统,DIB赋予电池不同的反应机制,不同的电极反应,副反应和界面化学。尽管在DIB的研究已经取得了相当大的进展,但仍有许多基础科学问题需要深入研究。目前,DIB研究的大多数表征方法是非原位技术,不可能实时检测电化学过程中物理和化学性质的变化。因此,迫切需要各种原位分析工具。探讨DIB中电极的离子扩散,电极反应,界面现象和结构稳定性。尽管DIB取得了令人鼓舞的进步,但是DIB的商业化还有很长的路要走,并且需要进一步优化电化学性能并降低DIB的成本。然而,通过克服关键障碍,DIB的实际应用很有希望在未来实现。
文献链接:Beyond Conventional Batteries: Strategies towards Low-Cost Dual-Ion Batteries with High Performances(Angew. Chem. Int. Ed., 2019, DOI:10.1002/anie.201814294)。


回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-8 08:38 , Processed in 0.109425 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表