找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1324|回复: 1
打印 上一主题 下一主题

[专家学者] 中山大学化学学院化学系张伟雄

[复制链接]

158

主题

173

帖子

199

积分

注册会员

Rank: 2

积分
199
跳转到指定楼层
楼主
发表于 2018-3-30 16:45:53 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
基本情况
姓名:张伟雄
性别:男
出生年月:1981-11
籍贯:广东梅州
职位:
2012年8年中山大学“百人计划”引进人才,副教授,博士生导师
联系方式
电话:+86-20-84110517
传真:暂未填写
通讯地址:广州市新港西路135号中山大学丰盛堂
邮编:510275
个人网站:暂未填写
教育经历
2004.09—2009.06:中山大学,无机化学专业硕博连读,博士
2000.09—2004.06:中山大学,应用化学专业,学士
工作经历
2012.08至今:中山大学化学与化学工程学院,副教授
2010.06—2012.08:日本东北大学,日本学术振兴会(JSPS)博士后
2009.07—2010.06:中山大学化学与化学工程学院,科研助理
讲授课程
基础化学实验I(无机,2012-2014)
基础化学实验IV(综合,2013-2014)
无机化学(地理科学本科生,2013)
现代无机化学进展(化学,2014-)
综合化学实验(化学,2014-)
高等无机化学(研究生,2016-)
单晶结构分析(研究生,2012-)
科研方向
功能配位化学、介电/磁性配合物、基于结构相变的功能响应配合物。已发表论文80多篇,他引4500多次,13篇入选ESI高引论文;H指数为34。 Researcher ID: D-3365-2011 (http://www.researcherid.com/rid/D-3365-2011)
科研项目
国家自然科学基金优青项目,21722107,2018-2020
国家自然科学基金面上项目,21671202,2017-2020
国家自然科学基金青年项目,21301198,2014-2016
科技部“国家重大科学仪器设备开发专项”子任务,2013YQ24051102,2013.10-2017.9
广东省特支计划科技创新青年拔尖人才项目,2015TQ01C250,2016-2019
广州市“珠江科技新星”项目,201610010027,2016.5-2019.4
广东省自然科学基金自由申请项目,S2013010012186,2013.10-2015.10
教育部博士点新教师类基金,20130171120002,2014.01-2016.12
中山大学青年教师重点培育项目,16lgzd10,2016-2017
中山大学百人计划启动基金,2012-2014
获奖情况
2017 国家优秀青年科学基金
2016 广东省特支计划科技创新青年拔尖人才
2016 广州市珠江科技新星
2015 化学与化学工程学院“87奖教金”
2014 广东省千百十人才培养工程校级培养对象
2012 中山大学“百人计划”引进人才
论著一览
综述与专著章节:
4) Zhang W.-X.; ZengM.-H.; Chen X.-M. Porous Molecular Magnets, Molecular MagneticMaterials: Concepts and Applications Editor: Barbara Sieklucka, DawidPinkowicz, Wiley-VCH Verlag GmbH & Co. KGaA, 2017: 253-278 (Book Chapter)
3) Xu W.-J.; Du Z.-Y.; ZhangW.-X.*; Chen X.-M. Structural phase transitions in perovskitecompounds based on diatomic or multiatomic bridges CrystEngComm 2016,18, 7915-7928.
2) Zhang W.-X.*; LiaoP.-Q.; Lin R.-B.; Wei Y.-S.; Zeng M.-H.*; Chen X.-M.* Metal cluster-basedfunctional porous coordination polymers Coord. Chem. Rev. 2015, 293-294,263-278.
1) Zhang W.-X.*;Ishikawa R.; Breedlove B. K.; Yamashita H.* Single-chain magnets: beyond theGlauber model RSC Adv. 2013, 3, 3772−3798.
部分论文目录(* 表示通讯联系人)
2017
41) Li W.; He C.-T.; Zeng Y.; Ji C.-M.; DuZ.-Y.*; Zhang W.-X.*; Chen X.-M. A crystallinesupramolecular gyroscope with a water molecule as an ultra-small polar rotatormodulated by charge-assisted hydrogen bonds J. Am. Chem. Soc. 2017, 139,8086-8089.
40) Xu W.-J.; Li P.-F.; Tang Y.-Y.; ZhangW.-X.*; Xiong R.-G.; Chen X.-M. A molecular perovskite withswitchable coordination bonds for high-temperature multi-axialferroelectrics J. Am. Chem. Soc. 2017, 139, 6369-6375. (Highlightedin Science)
39) Huang B.; Sun L.-Y.; Wang S.-S.; ZhangJ.-Y.; Ji C.-M.; Luo J.-H.; Zhang W.-X.*; Chen X.-M. Anear-room-temperature organic–inorganic hybrid ferroelectric: [C6H5CH2CH2NH3]2[CdI4] Chem.Commun. 2017, 53, 5764.
38) Su Y.-J.; Wei K.-X.; Huang B.; XuW.-J.; Zhang W.-X.*; Zeng M.-H.; Chen X.-M. DeformableMn(III)–Schiff-base dimer for anomalously large positive and negativeanisotropic thermal expansions CrystEngComm 2017, 19,1725-1728.
37) Du Z.-Y.; Zhang L.; Wang B.-Y.; LiuS.-J.*; Huang B.; Liu C.-M.*; Zhang W.-X.* Two magneticΔ-chain-based Mn(II) and Co(II) coordination polymers with mixedcarboxylate–phosphinate and μ3-OH− bridges CrystEngComm 2017,19, 1052-1057.
2016
36) Shi Q.; Xu W.-J.; Huang R.-K.; ZhangW.-X.*; Li Y.; Wang P.-F.; Shi F.-N.*; Li L.-B.; Li J.-P.; Dong J.-X.*Zeolite CAN and AFI-type ZIFs with large 12-MR pore openings synthesized usingbulky amides as structure-directing agents J. Am. Chem. Soc.2016,138, 16232-16235.
35) Xu, W.-J.; He, C.-T.; Ji, C.-M.; Chen,S.-L.; Huang, Y.-K.; Lin, R.-B.; Luo, J.-H.; Zhang, W.-X.*;Chen, X.-M. Molecular dynamics of flexible polar cation in variableconfined space: toward exceptional two-step nonlinear opticalswitches, Adv. Mater. 2016,28, 5886.
34) Huang B.; Wang B.-Y.; Du Z.-Y. Xue W.;Xu W.-J.; Su Y.-J.; Zhang W.-X.*; Zeng M.-H.; Chen X.-M.Importing spontaneous polarization into a Heisenberg ferromagnet for apotential single-phase multiferroic J. Mater. Chem. C 2016, 4,8704.
33) Sun Y.-Z.; Huang B.; Xu W.-J.; ZhouD.-D.; Chen S.-L.; Zhang S.-Y.; Du Z.-Y.* Xie Y.-R.; He  C.-T.*; ZhangW.-X.*; Chen X.-M. Plastic crystals with polar halochromate anion:thermosensitive dielectrics based upon plastic transition and dipolerotation Inorg. Chem. 2016, 55, 11418.
32) Xu W.-J.; Xie K.-P.; XiaoZ.-F.; Zhang W.-X.*; Chen X.-M. Controlling two-step phasetransitions and dielectric responses by A‑site cations in two perovskite-likecoordination polymers Cryst. Growth Des. 2016, 16, 7212-7217.
31) Xu W.-J.; Chen S.-L.; Hu Z.-T.; LinR.-B.; Su Y.-J.; Zhang W.-X.*; Chen X.-M.* Thecation-dependent structural phase transition and dielectric response in afamily of cyanobridged perovskite-like coordination polymers DaltonTrans. 2016, 42, 4224-4229.
30) Xie K.-P.; Xu W.-J.; He C.-T.; HuangB.; Du Z.-Y.; Su Y.-J.; Zhang W.-X.*; Chen X.-M.Order–disorder phase transition in the first thiocyanate-bridged doubleperovskite-type coordination polymer: [NH4]2[NiCd(SCN)6] CrystEngComm 2016, 18,4495.
2015
29)Du Z.-Y.; Xu T.-T.; Huang B.;Su Y.-J.; Xue W.; He C.-T.; Zhang W.-X.*;Chen, X.-M. Switchable guest molecular dynamics in aPerovskite-like coordination polymer toward sensitive thermo-responsivedielectric materials Angew. Chem. Int. Ed. 2015, 54,914.
28) Du Z.-Y.*; Sun Y.-Z.; Chen S.-L.; HuangB.; Su Y.-J.; Xu T.-T.; Zhang W.-X.*; Chen X.-M. Insightinto the molecular dynamics of guest cations confined in deformable azidocoordination frameworks Chem. Commun. 2015, 51,15641.
27) Bai J.; Zhou H.-L.; LiaoP.-Q.; Zhang W.-X.*; Chen X.-M. Structural diversity ofcoordination polymers controlled by the metal ion as the sole reactionvariable CrystEngComm 2015, 17, 4462-4468.
26) Wang B. Y; He C. T.; Huang B.; XuW. J.; Xue W.; Du Z. Y.; Zhang W.-X.*; Chen X.-M.Thermal-induced reversible ferroelastic phase transition in a newbromethyl-substituted molecular rotor Sci. Chin. Chem. 2015, 58,1137.
25) Liao P.-Q.; Zhang W.-X.;Zhang J.-P.*; Chen X.-M. Efficient purification of ethene byan ethane-trapping metal-organic framework Nat. Commun. 2015, 6,8697.
24) Liao P.-Q.; Zhu A.-X.; ZhangW.-X.; Zhang J.-P.*; Chen X.-M. Self-catalysed aerobic oxidization oforganic linker in porous crystal for on-demand regulation of sorptionbehaviors Nat. Commun. 2015, 6, 6350.
2014
23)He C.-T.; Liao P.-Q.; Zhou D.-D.; WangB.-Y.; Zhang W.-X.*; Zhang J.-P.*; ChenX.-M. Visualizing the distinctly different crystal-to-crystal structuraldynamism and sorption behavior of interpenetration-direction isomericcoordination networks Chem. Sci. 2014, 5,4755-4762.
22) Du Z.-Y.; Zhao Y.-P.; ZhangW.-X.*; Zhou H.-L.; He C.-T.; Xue W.; Wang B.-Y.; Chen, X.-M.Above-room-temperature ferroelastic phase transition in a perovskite-like cagecompound [N(CH3)4][Cd(N3)3] Chem.Commun. 2014, 50, 1989–1991.
21)Du Z.-Y.; Zhao Y.-P.; He C.-T.; Wang B.-Y.; Xue W.; Zhou H.-L.; Bai J.; Huang B,; Zhang W.-X.*; Chen X.-M.*Structural transition in the perovskite-like bimetallic azido coordinationpolymers: (NMe4)2[B'*B''(N3)6] (B' = Cr3+, Fe3+; B'' = Na+, K+) Cryst. GrowthDes. 2014, 14, 3903–3909.
20) Wang B.-Y.; Xu W.-J.; Xue W.; LinR.-B.; Du Z.-Y.; Zhou D.-D.; Zhang W.-X.*; ChenX.-M. Restraining the motion of ligand for modulating the structural phasetransition in two isomorphic polar coordination polymers Dalton Trans.2014, 43, 9008-9011.
19) Li F.; Lin Y.-B.; Wei Y.-S.; LiaoP.-Q.; Bai J.; Xue W.; Zhang W.-X.*; Zhang J.-P.*; ChenX.-M. Metal-ion controlled solid-state reactivity and photoluminescence in twoisomorphous coordination polymers Inorg. Chem. Front. 2014, 1,172–177.
18) Zeng M.-H.*; Yin Z.; Tan Y.-X.; ZhangW.-X.; He Y.-P.; Kurmoo M. Nanoporous cobalt(II) MOF exhibitingfour magnetic ground states and changes in gas sorption upon post-syntheticmodification J. Am. Chem. Soc. 2014, 136, 4680–4688.
2013
17) Qi X.-L.; Zhang C.; Wang B.-Y.;Xue W.; He C.-T.; Liu S.-Y.; Zhang W.-X.*; ChenX.-M.* Two new polar coordination polymers with diamond networks:interpenetration and thermal phase transition  CrystEngComm 2013, 15,9530−9536.
2012
16) Zhang W.-X.*; ShigaT.; Miyasaka H.; Yamashita H.* New approach for designing single-chain magnets:organization of chains via hydrogen bonding between nucleobases J. Am.Chem. Soc. 2012, 134, 6908−6911.
2011年以前
15) Zhang W.-X.; Xue W.;Chen X.-M.* Flexible mixed-spin Kagome coordination polymers with reversiblemagnetism triggered by dehydration and rehydration Inorg. Chem. 2011, 50,309−316.
14) Zhang W.-X.; Xue W.;Zheng Y.-Z.; Chen X.-M.* Two spin-competing manganese(II) coordination polymersexhibiting unusual multi-step magnetization jumps Chem. Commun. 2009,3804−3806.
13) Zhang W.-X.; Xue W.;Lin J.-B.; Zheng Y. Z.; Chen X.-M.* 3D geometrically frustrated magnetsassembled by transition metal ion and 1,2,3-triazole-4,5-dicarboxylate astriangular nodes CrystEngComm 2008, 10, 1770−1776.
12) Zhang W.-X.; YangY.-Y.*; Zai S.-B.; Ng S.-W.; Chen X.-M.* Syntheses, structures and magneticproperties of dinuclear Copper(II)-Lanthanide(III) complexes bridged by2-hydroxymethyl-1-methylimidazole Eur. J. Inorg. Chem. 2008,679−685.
11) Zhang Y.-B.; ZhangW.-X.; Feng F.-Y., Zhang J.-P.*; Chen X.-M.* A highly-connected porouscoordination polymer with interesting channel structure and sorptionproperties Angew. Chem., Int. Ed. 2009, 48,5287–5290.
10) Cheng X. N.; ZhangW.-X.; Chen X.-M.* Single crystal-to-single crystal transformation fromferromagnetic discrete molecules to a spin-canting antiferromagneticlayer J. Am. Chem. Soc. 2007, 129, 15738−15739.
9) Cheng X.-N.; Zhang W.-X.;Lin Y.-Y.; Zheng Y.-Z.; Chen X.-M.* A dynamic porous magnet exhibitingreversible guest-induced magnetic behavior modulation Adv. Mater. 2007, 19,1494−1498.
8) Wang W.-G.; Zhou A.-J.; ZhangW.-X.; Tong M.-L.*; Chen X.-M.; Nakano, M.; Beedle, C. C.; Hendrickson,D. N.* Giant heterometallic Cu17Mn28 clusterwith Td symmetry and high-spin ground state J.Am. Chem. Soc. 2007, 129, 1014−1015.
7) Zhang X.-M.*; Hao, Z.-M.; ZhangW.-X.; Chen X.-M. Dehydration-induced conversion from a single-chainmagnet into a metamagnet in a homometallic nanoporous metal-organic framework Angew.Chem., Int. Ed. 2007, 46, 3456−3459.
6) Zheng Y.-Z.; Tong M.-L.; XueW.; Zhang W.-X.; Chen X.-M.*; Grandjean, F.; Long, G. J.* A"Star" antiferromagnet: A polymeric iron(III) acetate that exhibitsboth spin frustration and long-range magnetic ordering Angew. Chem.,Int. Ed. 2007, 46, 6076−6080.
5) Zhang X.-M.*; Zhao Y.-T.; ZhangW.-X.; Chen X.-M. A tetrazolate- and cyano-bridged homometallicmixed-valence copper(I,II) molecular ferrimagnet Adv. Mater. 2007, 19,2843−2846.
4) Zeng M.-H.*; Yao M.-X.; LiangH.*; Zhang W.-X.; Chen X.-M. A single-molecule-magnetic,cubane-based, triangular Co12supercluster Angew. Chem., Int.Ed. 2007, 46, 1832−1835.
3) Zheng Y.-Z.; Tong M.-L.; ZhangW.-X.; Chen X.-M.* Assembling magnetic nanowires into networks: Alayered Co(II) carboxylate coordination polymer exhibiting single-chain-magnetbehavior Angew. Chem., Int. Ed. 2006, 45, 6310−6314.
2) Zhang J.-P.; Lin Y.-Y.; ZhangW.-X.; Chen X.-M.* Temperature- or guest-induced drasticsingle-crystal-to-single-crystal transformations of a nanoporous coordinationpolymer J. Am. Chem. Soc. 2005, 127, 14162−14163.
1) Zeng M.-H.; Zhang W.-X.;Sun X.-Z.; Chen X.-M.* Spin canting and metamagnetism in a 3D homometallicmolecular material constructed by interpenetration of two kinds ofcobalt(II)-coordination-polymer sheets Angew. Chem., Int. Ed. 2005, 44,3079−3082.
相关成果
1. 张伟雄、陈劭力、陈小明,一类化合物在作为含能材料方面的用途,中国发明专利,ZL 201610665880.3
2. 张伟雄、许伟剑、陈劭力、陈小明,一种新型高温铁电体及其制备方法,中国发明专利,201710281982.X
3. 张伟雄、黄波、郑赛利、薛玮、陈小明,一种多铁性化合物及其制备方法,中国发明专利,ZL 201510291844.0
4. 鲁统部、郑赛利、张伟雄,结晶型阿戈美拉汀溶剂化物及其制备方法,中国发明专利,ZL 201010187158.6
5. 鲁统部、闫岩、王子舟、张伟雄、誉智豪,一种I型氯吡格雷硫酸氢盐的制备方法,中国发明专利,ZL 201010154406.7


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

200

主题

233

帖子

358

积分

中级会员

Rank: 3Rank: 3

积分
358
沙发
发表于 2023-3-7 09:21:51 | 只看该作者
倍频效应是基频光与非中心对称介质(一般是晶体)相互作用产生二倍频光的一种重要非线性光学效应,在信息处理、医疗和通讯等领域有广泛的应用。长期以来,传统倍频晶体面临着大尺寸单晶生长困难,难以切割或成型(无机晶体),或是热稳定性差、机械强度低(有机晶体)等问题。兼有有机和无机组分的杂化晶体具有易加工、易调控等优点,近年来发展迅速,为探索新型非线性光学材料提供了重要平台。
       近十年来,杂化晶体的固液相变逐渐受到关注,因为它可给材料加工成形提供便利条件,从而提高杂化晶体的可用性。特别是,少数杂化晶体可以形成熔融淬火玻璃(称为杂化玻璃),具有透明、可加工和设计性强等特点,在光学领域有重要应用前景。然而,绝大多数杂化晶体在熔化前均经历不可逆的分解,或是其熔体结晶速度过快而不形成玻璃态,因此目前所知的杂化玻璃实例极少。
         张伟雄教授课题组一直致力于选择简单有机和无机离子组分合成致密杂化晶体,以其预设的相态变化开发新型功能材料。在复杂晶态结构相变与新型“键转换”机理的设计与研究基础上(JACS 2017, 139, 6369; JACS 2017, 139, 8086; JACS 2019, 141, 5645; JACS 2020, 142, 16990; Angew. Chem. Int. Ed. 2018, 57, 8032; Angew. Chem. Int. Ed. 2022, 61, e202110082),进一步挑战固液气等物态转变及其新型功能材料的设计,比如以高效充分的“瞬间固气转变”开发出国产含能材料新体系(Sci. China Mater. 2018, 61, 1123; Energ. Mater. Front. 2020, 1, 123),以及利用可逆固液转变合成双固溶体等特殊固态材料(Nat. Commun. 2020, 11, 2752);最近他们将目光转向更具挑战性的杂化玻璃,着力在分子层面设计这种新兴杂化材料并探索它们的实际应用。
近日,该课题组利用体积大且热稳定高的烷基三苯基鏻阳离子(Ph3PEt+)与异硫氰根金属配位单元组装,成功合成了一例新型杂化晶体(Ph3PEt)3[Ni(NCS)5]。该晶体结晶于极性P1空间群,且表现出罕见的“晶体–液体–玻璃–晶体”可逆转变。利用该可逆相态变化,他们将玻璃样品进行热压成形,之后退火可控部分晶化,从而在玻璃相中均匀镶嵌上微晶颗粒(即形成玻璃陶瓷)。内部微晶的极性,使得该玻璃陶瓷可表现出显著的倍频效应,在不经任何极化处理的情况下,其倍频强度就能达到其多晶形态的25.6倍,是经典倍频晶体KH2PO4的3.1倍。
图一:利用极性晶体的可逆“晶体–液体–玻璃–晶体”转变制备倍频效应玻璃陶瓷
        利用极性晶体制备非线性光学玻璃陶瓷,在杂化晶体领域尚属首例;这类极性玻璃陶瓷的可控合成有望绕过传统非线性光学材料长期面临的大单晶生长困难这一技术瓶颈。此外,该工作不仅展示了一例极性晶体的设计、合成、应用的完整过程,还结合多种研究手段深入理解了分子间弱相互作用在其中的重要角色,为后续设计新型极性玻璃陶瓷提供了新思路。
       相关结果以通讯形式发表发表在Angewandte Chemie International Edition上:De-Xuan Liu, Hao-Lin Zhu, Wei-Xiong Zhang,* and Xiao-Ming Chen; “Nonlinear Optical Glass-Ceramic From a New Polar Phase-Transition Organic-Inorganic Hybrid Crystal”, 2023, DOI: 10.1002/anie.202218902.
网页链接: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202218902
        文章的第一作者是我院博士研究生刘德轩,通讯作者是张伟雄教授。论文工作得到了国家自然科学基金和广东省珠江人才计划本土创新团队项目的资助,以及陈小明教授的大力支持。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-2 00:19 , Processed in 0.090054 second(s), 36 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表