找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 464|回复: 0
打印 上一主题 下一主题

[材料资讯] 许华平课题组实现高分子材料无约束三维形状编程

[复制链接]

182

主题

218

帖子

327

积分

中级会员

Rank: 3Rank: 3

积分
327
跳转到指定楼层
楼主
发表于 2021-9-26 11:59:11 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
可控变形材料在柔性电子、软体机器人和生物医疗器械中有着广阔的应用前景。由于形状记忆聚合物通过形状转换来实现其功能,因此它是一类理想的形状编程材料。然而传统形状记忆聚合物的永久形状通常依赖成型模具,而复杂模具的设计和加工耗时耗力。通过向形状记忆聚合物中引入热响应的动态共价键,可以使材料的永久形状摆脱对成型模具的依赖。但是由于热刺激不仅可以触发动态键的交换,还会引发材料的形状回复,因此材料在重塑形的过程中往往需要施加外力约束,这大大限制了材料三维形状的复杂性和多样性。除此之外,受热传递过程中的扩散行为和滞后性的影响,热刺激的时空分辨率相对较低。
       为了解决形状记忆材料应力编辑和形状回复相互干扰的问题,同时为了提高材料应力编辑的时空分辨率,化学系许华平教授课题组通过向形状记忆聚合物中引入光响应的二硒键,成功地实现了材料在无约束状态下的三维形状光编程。该团队利用光强在材料中的衰减过程和二硒键对不同光强的响应性差异,成功地在材料厚度方向上制备形成了应力梯度,通过对该梯度应力进一步热激活可以引发材料的不对称收缩,从而完成整个材料的面外弯曲过程。
图1.光诱导材料形成应力梯度
        通过将不同的应力方向、辐照区域和辐照方向进行组合,可以实现材料的一系列基础变形,这其中包括弯曲、折叠、扭转、螺旋等多种不同的变形模式。通过控制双臂材料的辐照方向可以实现不同弯曲方向交替排列的波浪状结构。通过对四臂材料进行拉伸并辐照,可以实现具有相同弯曲方向的花型结构。除了重复的同种变形之外,利用该形状编程方法还可以将波浪状和螺旋状等不同的变形模式集成到同一块材料中以实现更为复杂的形变。此外,利用有限元分析对材料的应力梯度和变形过程进行仿真,可以对材料的变形模式进行模拟和预测。
图2.材料不同三维形状的光编程及模拟仿真
        利用光热效应来代替传统的加热方式,还可以实现材料的序列变形。该团队通过向材料中掺杂一定含量的碳纳米管,制备得到了黑色半透明的二硒形状记忆材料,实验表明该材料具备良好的光热性能。通过对该材料进行应力编辑并配合660nm激光辐照,可以实现六臂材料的序列折叠过程。相对于整体的同时变形,这种具有时间分辨的序列变形模式可以大大增加材料三维形状的复杂程度。此外,利用该序列变形模式还可以进一步实现包含物体搬运和自支撑在内的一系列致动过程。
图3.序列变形、物体搬运和自支撑过程
       除宏观变形之外,该材料还可以用于微观三维图案的光学打印过程。将该材料进行拉伸并在特定位点进行辐照。经过加热收缩之后,可以在材料的表面形成各种各样的三维图案。该图案化方法简单有效,可用于多种不同形状和尺寸的三维微图案的制备。
图4.三维微图案的光学打印
        该工作通过将光响应的二硒键引入形状记忆聚合物中,实现了在无外力约束条件下的材料三维形状光编程,提高了应力编辑的时空分辨率,因此为形状编程材料的设计和制备提供了新思路。
       以上相关成果发表在《先进材料》(Advanced Materials)。清华大学化学系直博生刘诚和谭以正为共同第一作者,新加坡南洋理工大学姬少博博士和清华大学化学系许华平教授为共同通讯作者。
       论文链接:https://doi.org/10.1002/adma.202105194


       文章来源:清华大学
       许华平,教授,清华大学化学系副主任。2001年和2006年分别在吉林大学化学学院获得学士和博士学位,导师为张希院士。2004年4月至2005年3月,在比利时鲁汶大学交流学习一年。2006年8月至2008年7月在荷兰Twente大学从事博士后研究。2008年7月后在清华大学化学系工作,2014年起为清华大学化学系教授。2011年获得“中国化学会青年化学奖”。2014年获国家自然科学基金委“杰出青年科学基金”资助。2015年入选中组部“万人计划”青年拔尖人才,2017年“万人计划”领军人才。2017年起担任美国化学会ACS Biomaterials Science & Engineering副主编。任中国化学会化学教育学科委员会副主任委员、青年工作者委员会委员、化学奥林匹克竞赛委员会委员。主要研究方向为含硒高分子。


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-18 10:54 , Processed in 0.151603 second(s), 39 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表