找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 63|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈立新教授、范修林研究员团队《Nature》 :配体通道促进传输机制实现超快离子传输

[复制链接]

108

主题

132

帖子

204

积分

中级会员

Rank: 3Rank: 3

积分
204
跳转到指定楼层
楼主
发表于 2024-3-4 08:37:07 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
随着锂离子电池的应用逐渐向电动汽车、海底勘测、空间探索、极地科考等领域深入,要求锂离子电池具有高能量密度、高倍率和宽温域稳定循环,这要求电解液必须具有能高离子电导率、低溶剂化能和宽液程,且在正负极形成稳定的界面膜,这对目前的电解液来说是不易实现的。溶剂-锂离子-阴离子之间的相互作用决定了电解液的性质,包括离子电导率、溶剂化/脱溶剂化行为、界面化学性质等。其中,高离子电导率需要较高的锂离子溶剂化能,而阴离子衍生的界面膜则需要较低的锂离子溶剂化能,而基于目前的电解液设计原则很难同时满足上述两个特性。如何调整溶剂-锂离子-阴离子之间的相互作用,使得电解液同时具备快速离子传输动力学和生成稳定有效的界面膜,仍是当前电解液设计的挑战。
       为了实现苛刻条件下锂离子电池的稳定循环,浙江大学材料学院陈立新教授、范修林研究员团队,联合马里兰大学王春生教授、布鲁克海文国家实验室胡恩源教授等,提出快离子传输的电解液设计原则,建立锂离子在液态电解液和固态电解质中传输行为的统一框架,提出并验证了一种“配体通道促进传输”机制,加速锂离子传输,从而实现高倍率(≥6C)、宽温域(-70°C~60°C)高比能锂离子电池的稳定循环。
      该项研究成果于北京时间2024年2月29日,被国际顶级期刊《自然》在线刊登。论文第一作者为浙江大学陆迪博士研究生和李如宏研究员,通讯作者为浙江大学范修林研究员、美国马里兰大学王春生教授和美国布鲁克海文国家实验室的胡恩源教授,并受到浙江大学陈立新教授、范利武长聘副教授、肖学章副教授以及中国科学院化学研究所王建平研究员和马里兰大学邓涛博士(现为上海交大中英低碳研究院副教授)的大力支持。浙江大学为该论文的第一通讯单位。
图1.电解液设计原则及溶剂筛选策略。(a)介质传输;(b)结构传输;(c)配体通道促进传输;(d)锂离子溶剂化能与溶剂化鞘尺寸关系图;(e)锂离子传输能垒与溶剂化鞘尺寸关系图。
       研究团队基于锂离子溶剂化能、锂离子溶剂化鞘体积大小和锂离子传输能垒对23种溶剂材料进行筛选,其中水(H2O)、乙腈(AN)和氟乙腈(FAN)三种溶剂被筛选出来。考虑到H2O和AN溶剂并不能在负极界面形成较稳定的固态电解质界面膜(SEI),只有FAN满足苛刻条件下电解液的要求。传统电解液中的锂离子传输模式可以分为介质传输和结构传输两种,但是基于两者的电解液设计,均难以满足电解液中锂离子快速传输的需求。研究团队进而提出小分子溶剂实现“配体通道促进传输”机制,通过外层溶剂化鞘中的小分子溶剂与内层锂离子的相互作用,形成锂离子传输通道,降低离子传输能垒,加速锂离子扩散(图1)。
       研究团队基于上述准则,设计出一款新型电解液[1.3M双氟磺酰亚胺锂盐(LiFSI)/ FAN],同时实现宽温高离子电导率(25°C:40.3 mS/cm,-70°C:11.9 mS/cm)并生成LiF-LixN-rich SEI。为了深入研究锂离子在电解液中的传输机制,研究团队提出“传输指数(TI)”,用于定量描述电解液中离子传输行为。在理想稀溶液中(TI=0),锂离子传输模式为介质传输;在固态电解质中(TI=1),锂离子传输模式为结构传输。当电解液具有配体通道促进传输机制,TI为0.5左右时,离子电导率达到最大值,实现不同于介质/结构传输的独特快速离子传输行为。值得注意的是,TI作为直接且有效的参数可以指导设计具有超离子行为的理想电解液。
       得益于较高的离子电导率和界面钝化能力,1.3M LiFSI/FAN电解液实现了室温以及高温下的高倍率(≥6C)稳定循环。值得注意的是,对石墨基锂离子电池来说,低温充电尤其具有挑战性,研究团队设计出的电解液可以实现4.5V 石墨||NMC811电池在-35°C下可逆充放电循环超350圈后,容量保持率仍高达96%;同时实现1.2Ah 4.5V 石墨||NMC811软包电池在-50°C下可逆充放电稳定循环超150圈无明显的容量衰减。此外,研究团队通过HRTEM、XAS和理论计算表明,FAN溶剂与FSI-阴离子均会在负极界面分解,形成富LiF-LixN-rich SEI。这种低阻抗且有效的界面膜促进了锂离子的快速传输。
        该研究通过对离子传输机制的深入探究,提出快速离子传输溶剂的筛选描述符及电解液的设计原则,为开发苛刻条件下高比能锂离子电池电解液提供了重要的理论依据和技术探索。
        文章来源:浙江大学
        陈立新: 工学博士,浙江大学教授、博士生导师,材料科学与工程学院副院长。兼任中国可再生能源学会常务理事、氢能专委会副主任委员,中国氢能标准化技术委员会委员,中国稀土学会理事,中国动力工程学会工业气体专委会委员。入选教育部"新世纪优秀人才支持计划"和浙江省"新世纪151人才工程"。主要从事各种金属氢化物、轻金属络合氢化物、液体有机氢化物等储氢材料的基础研究以及氢化物储氢装置与技术、燃料电池氢源系统、汽车氢-油混燃动力系统、锂离子电池和镍氢电池等新型电极材料的应用开发。先后承担完成和在研的国家自然科学基金面上项目6项、国家高技术研究与发展计划(863)课题4项、国家重点基础研究发展计划(973)子课题2项、教育部新世纪优秀人才项目1项、高校博士点基金项目1项、浙江省重大科技专项项目1项以及其它科研项目9项。参与编写了《燃料电池备用电源用金属氢化物储氢系统技术要求》、《氢化物可逆吸放氢压力-组成等温线(P-C-T)测试方法》、《氢系统安全的基本要求》等国家标准。研究成果申报发明专利31项(其中20项已授权),获得教育部科技进步一等奖1项,并在Nano Energy, J. Mater. Chem., Chem. Commun., J. of Phys. Chem. C, Appl. Phys. Lett.等学术期刊上发表SCI收录论文180余篇。
        范修林,分别于2007年和2012年从浙江大学材料科学与工程系获得学士和博士学位。2013年开始在美国马里兰大学从事博士后研究,2017年4月晋升为研究科学家。2019年入选国家级青年人才计划,同年8月加入浙江大学材料科学与工程学院担任“百人计划”研究员。主要从事二次电池(包括锂离子电池、钠离子电池、钾离子电池等)等能源存储器件的界面工程及相关电解液/电解质的设计研究,在Science, Nature Nanotech., Nature Mater., Nature Energy等期刊发表SCI论文150余篇,引用次数>26000,h-index=83,i10-index=173。连续多年入选科睿唯安(Clarivate)全球高被引科学家,入选2020年中国新锐科技人物。
      

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖

相关帖子

回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-6 08:09 , Processed in 0.153124 second(s), 43 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表