找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 809|回复: 0
打印 上一主题 下一主题

[专家学者] 哈工大材料学院材料科学与工程张学习

[复制链接]

248

主题

252

帖子

264

积分

中级会员

Rank: 3Rank: 3

积分
264
跳转到指定楼层
楼主
发表于 2017-4-3 21:14:47 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
张学习,男,汉族,1975年生。教授;哈尔滨工业大学材料科学与工程学院。研究领域:铁磁形状记忆合金;高性能金属基复合材料;磁热与弹热效应及新材料;电池材料界面效应。


张学习
博士生导师
目前就职材料科学与工程学院
所在学科 材料科学与工程
电话0451-86415894
传真0451-86413922
邮箱xxzhang@hit.edu.cn
地址哈尔滨工业大学433信箱,150001


工作经历:
2009/10-现在 哈尔滨工业大学,材料学院,博士生导师
2010/5-2010/8 西北大学(美国),材料科学与工程系,访问学者
2009/10-现在 哈尔滨工业大学,材料学院,教授
2008/1-2009/2 西北大学(美国),材料科学与工程系,访问学者
2004/6-2009/9 哈尔滨工业大学,材料学院,副教授
2002/4-2004/5 哈尔滨工业大学,材料学院,讲师

学习经历:
1999/9-2003/12 哈尔滨工业大学,材料学院,博士生
2002/4 提前留校任教
1997/9-1999/7 哈尔滨工业大学,材料学院,硕士生
1993/9-1997/7 中北大学(原太原机械学院),金属材料及热处理专业,本科生

研究领域
新型形状记忆合金及其复合材料
高性能结构与功能复合材料
功能泡沫材料
讲授课程
金属力学性能
金属与合金强化的微观理论
招生信息
硕士招生:
新型形状记忆合金及其复合材料
结构与功能复合材料
功能泡沫材料
博士招生:
新型形状记忆合金及其复合材料
结构与功能复合材料
功能泡沫材料



Research interests:
Ferromagnetic shape memory alloys (FMSMAs)
FMSMs such as Ni-Mn-X (X = Ga, In, Sn and Sb) and their ternary alloys exhibit fruitful magnetic transition and martensite transformation (MT) driven by heat, stress or magnetic field. Consequently, they have received increasing interests due to their multifunctional properties including conventional properties like magnetic shape memory effect (MSME), shape recovery and superelasticity (SE); magnetic properties like magnetic-field-induced strain (MFIS), giant magnetoresistance (MR) and metamagnetic and multi-caloric effects like magnetocaloric effect (MCE), elastocaloric effect (eCE) and barocaloric effect (BCE). In recent years, we focused our work on the preparation, microstructure and properties of low-dimensional materials structures such as powders, microwires and foams. Special emphasis is placed on the multicaloric effects, e.g. magnetocaloric effects (MCE), elastocaloric effects (eCE), barocaloric effects (BCE), of these alloys and their complex architectures for room-temperature solid-state refrigeration.


Aluminum Metal-Matrix Composites (MMCs)
MMCs show high specific modulus, strength, wear resistance and low coefficient of thermal expansion, making them high application interests in advanced mechanics and industries. In recent years, we carried out simulation and experimental works on the design, preparation, characterization and application of particle, whisker, carbon nanotube and graphene reinforced aluminum composites. Special emphasis is placed on the creation of inhomogeneous reinforcement architectures, high throughput fabrication and characterization of advanced metal-matrix composites. The aim of these works is to push these advanced structural and functional materials into industrial applications.


Publications on FMSMAs and Aluminum MMCs
[94] Zhang H, Zhang X, Qian M, Yao Z, Wei L, Geng L. Increasing working temperature span in Ni-Mn-Sn-Co alloys via introducing pores. J Magn Magn Mater. 2020;500.
[93] Yuan B, Qian M, Zhang X, Geng L. Grain structure related inhomogeneous elastocaloric effects in Cu–Al–Mn shape memory microwires. Scripta Mater. 2020;178:356-60.
[92] Jia Z, Zhang X, Zhong J, Tian H, Xiong Y. Enhancing the specific capacity and rate performance of MoS2 nanomaterials via introducing subgrains at a hydrothermal temperature 160 °C. J Electroanal Chem. 2020;856.
[91] Zhu X, Zhang X, Qian M, Imran M. Elastocaloric effects related to B2?R and B2?B19′ martensite transformations in nanocrystalline Ni50.5Ti49.5 microwires. J Alloy Compd. 2019;792:780-8.
[90] Zhang X, Zheng Z, Gao Y, Geng L. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites. Jinshu Xuebao. 2019;55:109-25.
[89] Zhang X, Wei L. Processing and damping capacity of NiTi foams with laminated pore architecture. J Mech Behav Biomed. 2019;96:108-17.
[88] Zhang R, Qian M, Waske A, Shen H, Zhang X. Investigating the microstructure and magnetic properties of La-Fe-Si microwires during fabrication and heat treatment process. J Alloy Compd. 2019;794:153-62.
[87] Zhang H, Zhang X, Qian M, Yuan B, Geng L. Effect of partial metamagnetic and magnetic transition coupling on the magnetocaloric effect of Ni-Mn-Sn-Fe alloy. Intermetallics. 2019;105:124-9.
[86] Yuan B, Zhu X, Zhang X, Qian M. Elastocaloric effect with small hysteresis in bamboo-grained Cu–Al–Mn microwires. J Mater Sci. 2019;54:9613-21.
[85] Wei L, Zhang X, Geng L. Microstructure and properties of NiTi foams with 69% porosity. Vacuum. 2019;162:15-9.
[84] Wei L, Zhang X, Gan W, Ding C, Geng L. Hot extrusion approach to enhance the cyclic stability of elastocaloric effect in polycrystalline Ni-Mn-Ga alloys. Scripta Mater. 2019;168:28-32.
[83] Qian M, Zhang X, Li J, Gao X, Geng L. Microstructure and mechanical properties of ABOw and nickel-coated MWCNTs reinforced 2024Al hybrid composite fabricated by squeeze casting. Mater Chem Phys. 2019;226:344-9.
[82] Liu Y, Luo L, Zhang X, Shen H, Liu J, Sun J, et al. Magnetostructural coupling induced magnetocaloric effects in Ni–Mn-Ga-Fe microwires. Intermetallics. 2019;112.
[81] Li J, Zhang X, Geng L. Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites. Compos Part A Appl Sci Manuf. 2019;121:487-98.
[80] Li AB, Wang GS, Zhang XX, Li YQ, Gao X, Sun H, et al. Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles. Mater Sci Eng A. 2019;745:10-9.
[79] Gao X, Zhang X, Qian M, Geng L. Effect of reinforcement shape on fracture behaviour of SiC/Al composites with network architecture. Compos Struct. 2019;215:411-20.
[78] Gao X, Zhang X, Li A, Geng L. Plastic deformation and fracture behaviors in particle-reinforced aluminum composites: A numerical approach using an enhanced finite element model. J Compos Mater. 2019.
[77] Gao X, Zhang X, Li A. Numerical Study on Mechanical Properties of Quasi-Continuous SiCp/Al Network Composites with Various Particle Size Ratios (PSRs). Int J Appl Mech. 2019;11.
[76] Gao X, Zhang X, Geng L. Strengthening and fracture behaviors in SiCp/Al composites with network particle distribution architecture. Mater Sci Eng A. 2019;740-741:353-62.
[75] Zhu X, Zhang X, Qian M. Reversible elastocaloric effects with small hysteresis in nanocrystalline Ni-Ti microwires. Aip Adv. 2018;8.
[74] Zhang X, Zhang H, Qian M, Geng L. Enhanced magnetocaloric effect in Ni-Mn-Sn-Co alloys with two successive magnetostructural transformations. Sci Rep-Uk. 2018;8.
[73] Zhang X, Qian M, Zhu X, Shang C, Geng L. Elastocaloric effects in ultra-fine grained NiTi microwires processed by cold-drawing. Apl Mater. 2018;6.
[72] Zhang R, Zhang X, Qian M, Sun J, Geng L. Effect of Si doping on microstructure and martensite transformation in Ni-Mn-Sb ferromagnetic shape memory alloys. Intermetallics. 2018;97:1-7.
[71] Zhang R, Zhang X, Qian M, Sun J, Geng L. Dataset on the microstructure Ni50Mn38Sb9Si3 alloy and compositions of Ni50Mn38Sb12?xSix (x=2.5, 3) ferromagnetic shape memory alloys. Data Brief. 2018;19:222-5.
[70] Zhang R, Zhang X, Qian M, Geng L. Effect of Co-Doping on the Microstructure, Martensitic Transformation Behavior, and Magnetocaloric Effect of Ni-Mn-Sb-Si Ferromagnetic Shape Memory Alloys. Metall Mat Trans A Phys Metall Mat Sci. 2018;49:6416-25.
[69] Yuan B, Zeng L, Qian M, Zhang X, Geng L. Elastocaloric Effects in Shape Memory Alloys:a Review and New Perspectives. Cailiao Daobao/Mater Rev. 2018;32:3033-40 and 59.
[68] Wu HF, Li JC, Zhang XX, Geng L. Microstructural evolution of graphene/6061Al composites during hot extrusion. Cailiao Rechuli Xuebao. 2018;39:14-9.
[67] Wei LS, Zhang XX, Qian MF, Martin PG, Geng L, Scott TB, et al. Compressive deformation of polycrystalline Ni-Mn-Ga alloys near chemical ordering transition temperature. Mater Des. 2018;142:329-39.
[66] Wei L, Zhang X, Liu J, Geng L. Orientation dependent cyclic stability of the elastocaloric effect in textured Ni-Mn-Ga alloys. Aip Adv. 2018;8.
[65] Qian M, Zhang X, Wei L, Martin P, Sun J, Geng L, et al. Tunable Magnetocaloric Effect in Ni-Mn-Ga Microwires. Sci Rep-Uk. 2018;8.
[64] Qian M, Zhang X, Jia Z, Wan X, Geng L. Enhanced magnetic refrigeration capacity in Ni-Mn-Ga micro-particles. Mater Des. 2018;148:115-23.
[63] Qian M, Zhang X, Jia Z, Wan X, Geng L. Dataset on enhanced magnetic refrigeration capacity in Ni–Mn–Ga micro-particles. Data Brief. 2018;19:444-8.
[62] Liu YF, Liu XH, Ma L, Yang LH, Wen YX, Song CQ, et al. Effect of chemical ordering annealing on Ni-Mn-Ga-Fe shape memory microwires. Zhongguo Youse Jinshu Xuebao. 2018;28:749-57.
[61] Li J, Zhang X, Geng L. Improving graphene distribution and mechanical properties of GNP/Al composites by cold drawing. Mater Des. 2018;144:159-68.
[60] Zhang XX, Qian MF, Wang GW, Xu PF, Geng L, Sun JF. High damping capacity of Ni–Mn–Ga–Cu microwires prepared by melt-extraction technique. Rare Metals. 2017:1-6.
[59] Zhang R, Qian M, Zhang X, Qin F, Wei L, Xing D, et al. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys. J Magn Magn Mater. 2017;428:464-8.
[58] Zhang H, Zhang X, Qian M, Wei L, Xing D, Sun J, et al. Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J Alloy Compd. 2017;715:206-13.
[57] Zhang H, Qian M, Zhang X, Jiang S, Wei L, Xing D, et al. Magnetocaloric effect of Ni-Fe-Mn-Sn microwires prepared by melt-extraction technique. Mater Des. 2017;114:1-9.
[56] Gao X, Zhang X, Geng L. An enhanced FEM model on the deformation behavior of SiC/aluminum composites. 21st International Conference on Composite Materials, ICCM 2017: International Committee on Composite Materials; 2017.
[55] Zhang X, Qian M, Zhang Z, Wei L, Geng L, Sun J. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-Ga-Cu microwires. Appl Phys Lett. 2016;108.
[54] Zhang X, Qian M, Su R, Geng L. Giant room-temperature inverse and conventional magnetocaloric effects in Ni-Mn-In alloys. Mater Lett. 2016;163:274-6.
[53] Zhang X, Qian M, Miao S, Su R, Liu Y, Geng L, et al. Enhanced magnetic entropy change and working temperature interval in Ni-Mn-In-Co alloys. J Alloy Compd. 2016;656:154-8.
[52] Zhang H, Qian M, Zhang X, Wei L, Cao F, Xing D, et al. Martensite transformation and magnetic properties of Fe-doped Ni-Mn-Sn alloys with dual phases. J Alloy Compd. 2016;689:481-8.
[51] Wei L, Zhang X, Qian M, Cui X, Geng L, Sun J, et al. Introducing equiaxed grains and texture into Ni-Mn-Ga alloys by hot extrusion for superplasticity. Mater Des. 2016;112:339-44.
[50] Qian MF, Zhang XX, Wei LS, Martin PG, Sun JF, Geng L, et al. Microstructural evolution of Ni-Mn-Ga microwires during the melt-extraction process. J Alloy Compd. 2016;660:244-51.
[49] Li AB, Cui XP, Wang GS, Qu W, Li F, Zhang XX, et al. Fabrication of in situ Ti5Si3/TiAl composites with controlled quasi-network architecture using reactive infiltration. Mater Lett. 2016;185:351-4.
[48] Zhou MZ, Zhang X, Meng XL, Cai W, Zhao LC. Temperature memory effect induced by incomplete transformation in Ni-Mn-Ga-based shape memory alloy. Mater Today Proc. 2015;2:S867-S70.
[47] Wei LS, Zhang XX, Qian MF, Geng L. Microstructure and texture after deformation-induced grain growth in polycrystalline Ni48Mn30Ga22 alloys. Mater Today Proc. 2015;2:S863-S6.
[46] Qian MF, Zhang XX, Wei LS, Geng L, Peng HX. Structural, Magnetic and Mechanical Properties of Oligocrystalline Ni-Mn-Ga Shape Memory Microwires. Mater Today Proc. 2015;2:S577-S81.
[45] Qian MF, Zhang XX, Wei LS, Geng L, Peng HX. Effect of chemical ordering annealing on martensitic transformation and superelasticity in polycrystalline Ni-Mn-Ga microwires. J Alloy Compd. 2015;645:335-43.
[44] Liu Y, Zhang X, Xing D, Shen H, Qian M, Liu J, et al. Martensite transformation and superelasticity in polycrystalline Ni-Mn-Ga-Fe microwires prepared by melt-extraction technique. Mater Sci Eng A. 2015;636:157-63.
[43] Liu Y, Zhang X, Xing D, Shen H, Chen D, Liu J, et al. Martensite transformation and magnetic properties of Ni50Mn25Ga25-xFex ferromagnetic microwires for application in microdevices. Phys Status Solidi A Appl Mater Sci. 2015;212:855-61.
[42] Liu Y, Zhang X, Liu J, Xing D, Shen H, Chen D, et al. Superelasticity in polycrystalline Ni-Mn-Ga-Fe microwires fabricated by melt-extraction. Mater Res. 2015;18:61-5.
[41] Du Y, Li AB, Zhang XX, Tan ZB, Su RZ, Pu F, et al. Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles. Mater Lett. 2015;148:79-81.
[40] Zhang XX, Miao SP, Sun JF. Magnetocaloric effect in Ni-Mn-In-Co microwires prepared by Taylor-Ulitovsky method. Trans Nonferrous Met Soc China. 2014;24:3152-7.
[39] Liu Y, Zhang X, Xing D, Shen H, Chen D, Liu J, et al. Magnetocaloric effect (MCE) in melt-extracted Ni-Mn-Ga-Fe Heusler microwires. J Alloy Compd. 2014;616:184-8.
[38] Liu Y, Zhang X, Xing D, Qian M, Shen H, Wang H, et al. Shape memory effects of Ni49.7Mn25.0Ga19.8Fe5.5 microwires prepared by rapid solidification. Phys Status Solidi A Appl Mater Sci. 2014;211:2532-6.
[37] Glock S, Zhang XX, Kucza NJ, Müllner P, Michaud V. Structural, physical and damping properties of melt-spun Ni-Mn-Ga wire-epoxy composites. Compos Part A Appl Sci Manuf. 2014;63:68-75.
[36] Zheng XH, Sui JH, Zhang X, Yang ZY, Wang HB, Tian XH, et al. Thermal stability and high-temperature shape memory effect of Ti-Ta-Zr alloy. Scripta Mater. 2013;68:1008-11.
[35] Zhang XX, Wei HM, Li AB, Fu YD, Geng L. Effect of hot extrusion and heat treatment on CNTs-Al interfacial bond strength in hybrid aluminium composites. Compos Interface. 2013;20:231-9.
[34] Zhang XX, Li AB, Yan RF, Yu WG, Geng L. Microstructure and were resistance in hybrid aluminium composites with SiC whisker and carbon nanotubes. 19th International Conference on Composite Materials, ICCM 2013: International Committee on Composite Materials; 2013. p. 5921-3.
[33] Zhang XX, Hou HW, Wei LS, Chen ZX, Wei WT, Geng L. High damping capacity in porous NiTi alloy with bimodal pore architecture. J Alloy Compd. 2013;550:297-301.
[32] Qian MF, Zhang XX, Witherspoon C, Sun JF, Müllner P. Superelasticity and shape memory effects in polycrystalline Ni-Mn-Ga microwires. J Alloy Compd. 2013;577:S296-S9.
[31] Zheng XH, Sui JH, Zhang X, Tian XH, Cai W. Effect of y addition on the martensitic transformation and shape memory effect of Ti-Ta high-temperature shape memory alloy. J Alloy Compd. 2012;539:144-7.
[30] Zhang XX, Wei HM, Geng L, Fu YD. Enhancing interfacial boding strength between multi-walled carbon nanotubes and aluminum by hot extrusion and heat treatment. 15th European Conference on Composite Materials: Composites at Venice, ECCM 2012. Venice: European Conference on Composite Materials, ECCM; 2012.
[29] Zhang XX, Witherspoon C, Müllner P, Dunand DC. Effect of pore architecture on magnetic-field-induced strain in polycrystalline Ni-Mn-Ga. Acta Mater. 2011;59:2229-39.
[28] Zhang BP, Geng L, Huang LJ, Zhang XX, Dong CC. Enhanced mechanical properties in fine-grained Mg-1.0Zn-0.5Ca alloys prepared by extrusion at different temperatures. Scripta Mater. 2010;63:1024-7.
[27] Müllner P, Zhang X, Boonyongmaneerat Y, Witherspoon C, Chmielus M, Dunand DC. Recent developments in Ni-Mn-Ga foam research. 2nd International Conference on Ferromagnetic Shape Memory Alloys, ICFSMA2009. Bilbao2010. p. 119-24.
[26] Deng CF, Ma YX, Xue XB, Zhang XX, Wang DZ. Mechanical properties and fracture characterization of 2024Al composite reinforced with carbon nanotube. Cailiao Kexue yu Gongyi. 2010;18:229-32.
[25] Chmielus M, Witherspoon C, Wimpory RC, Paulke A, Hilger A, Zhang X, et al. Magnetic-field-induced recovery strain in polycrystalline Ni-Mn-Ga foam. J Appl Phys. 2010;108.
[24] Deng C, Zhang P, Ma Y, Zhang X, Wang D. Dispersion of multiwalled carbon nanotubes in aluminum powders. Rare Metals. 2009;28:175-80.
[23] Chmielus M, Zhang XX, Witherspoon C, Dunand DC, Müllner P. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams. Nat Mater. 2009;8:863-6.
[22] Chen Y, Zhang X, Dunand DC, Schuh CA. Shape memory and superelasticity in polycrystalline Cu-Al-Ni microwires. Appl Phys Lett. 2009;95.
[21] Deng CF, Ma YX, Zhang P, Zhang XX, Wang DZ. Thermal expansion behaviors of aluminum composite reinforced with carbon nanotubes. Mater Lett. 2008;62:2301-3.
[20] Zhang XX, Deng CF, Xu R, Wang DZ. Oxidation resistance of multi-walled carbon nanotubes purified with sulfuric and nitric acids. J Mater Sci. 2007;42:8377-80.
[19] Zhang XX, Deng CF, Shen YB, Wang DZ, Geng L. Mechanical properties of ABOw+MWNTs/Al hybrid composites made by squeeze cast technique. Mater Lett. 2007;61:3504-6.
[18] Zhang X, Shen Y, Deng C, Wang D, Geng L. Preparation of novel aluminum hybrid composite containing aluminum borate whiskers and carbon nanotubes. Asian Pacific Conference for Fracture and Strength (APCFS'06). Sanya, Hainan Island2007. p. 1414-7.
[17] Wei HM, Geng L, Zhang XX. Influences of strontium addition and whisker content on solidification behavior of SiCw/Al-18Si metal matrix composites. 5th International Conference on Processing and Manufacturing of Advanced Materials - THERMEC 2006. Vancouver, BC: Trans Tech Publications; 2007. p. 251-4.
[16] Geng L, Wei HM, Zhang XX. Investigation on the Primary Si Phase Solidification and the Properties of SiCw/Al-18Si Composites. Asian Pacific Conference for Fracture and Strength (APCFS'06). Sanya, Hainan Island2007. p. 1275-8.
[15] Deng CF, Zhang XX, Wang DZ, Ma YX. Calorimetric study of carbon nanotubes and aluminum. Mater Lett. 2007;61:3221-3.
[14] Deng CF, Wang DZ, Zhang XX, Ma YX. Damping characteristics of carbon nanotube reinforced aluminum composite. Mater Lett. 2007;61:3229-31.
[13] Deng CF, Wang DZ, Zhang XX, Li AB. Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A. 2007;444:138-45.
[12] Deng C, Zhang X, Wang D, Lin Q, Li A. Preparation and characterization of carbon nanotubes/aluminum matrix composites. Mater Lett. 2007;61:1725-8.
[11] Deng C, Zhang X, Ma Y, Wang D. Fabrication of aluminum matrix composite reinforced with carbon nanotubes. Rare Metals. 2007;26:450-5.
[10] Chunfeng D, Xuexi Z, Dezun W. Chemical stability of carbon nanotubes in the 2024Al matrix. Mater Lett. 2007;61:904-7.
[9] Zhang XX, Deng CF, Wang DZ, Geng L. Synthesis and thermal stability of multiwall carbon nanotubes reinforced aluminum metal matrix composites. Trans Nonferrous Met Soc China. 2005;15:240-4.
[8] Zhang XX, Wang DZ, Yao ZK. Effect of solidification conditions on morphology of eutectic Si in Al-15Si composites. Cailiao Kexue yu Gongyi. 2003;11:164-7.
[7] Zhang XX, Wang DZ, Geng L, Zheng ZZ, Yao CK. Study of the Nucleation and Growth Behavior of Al2O 3-SiO2/LD11 Composites Fabricated by Squeeze Casting Method. In: Zhang L, Guo J, Tuan WH, editors. Composite Materials III: Proceedings of the 3rd China Cross-Strait Conference on Composite Materials. Wuhan2003. p. 245-50.
[6] Zhang XX, Wang DZ, Geng L. Coarsening of eutectic silicon in squeeze-cast alumina fiber reinforced eutectic Al-Si aluminum composites. J Mater Sci Lett. 2003;22:861-3.
[5] Zhang X, Wang D, Yao Z. DSC study of the nucleation phenomenon in aluminum metal matrix composites. Fuhe Cailiao Xuebao. 2003;20:18-22.
[4] Zhang XX, Wang DZ, Yao CK. Nucleation and growth behavior of primary silicon in alumina fiber reinforced hypereutectic Al-Si composite. J Mater Sci Lett. 2002;21:921-2.
[3] Zhang X, Wang D, Yao Z, Zhao M. Commercialization of discontinuously reinforced metal-matrix composites. Hangkong Zhizao Jishu. 2002:35.
[2] Zhang XX, Wang DZ, Ding DY, Yao CK. Numerical simulation of unidirectional infiltration of silicon carbide preforms. Journal of Materials Science and Technology. 2001;17:11-2.
[1] Ding DY, Wang DZ, Zhang XX, Yao CK. Mechanical properties of the alumina-coated Al18B4O33w/6061 Al composites. Mater Sci Eng A. 2001;308:19-24.

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-29 06:27 , Processed in 0.089449 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表