找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 9662|回复: 24
打印 上一主题 下一主题

[专家学者] 武汉理工大学材料学院麦立强

  [复制链接]

46

主题

57

帖子

61

积分

注册会员

Rank: 2

积分
61
楼主
发表于 2018-5-17 08:18:02 | 显示全部楼层

武汉理工麦立强Nano energy:等离子刻蚀三氧化钼制造氧缺陷实现储锂结构稳定及可逆容量提升

每年不可再生能源消耗的增加,给资源与环境带来了巨大的压力。因此科学家们一直致力于开发新能源,包括太阳能,潮汐能,风能等。然而,这些能源在功率输出方面往往较低且不稳定,从而造成这些能源不能被直接利用。利用电化学能量存储技术来存储这些能量被认为是很好的解决手段。在典型的能量存储系统中,锂离子电池(LIBs)因其相对较大的比容量和较高的工作电压而脱颖而出,从而被广泛应用于人们的生产生活中。然而,现今商业化的LIBs比容量有限,并且在过去的几十年里,增长缓慢。为了解决这个问题,很多科学家一直致力于研发具有高容量的正极材料。α-MoO3正是这些具有高比容量的正极材料之一,这在过去几年中得到了深入的研究。然而,由于在〜2.8V发生不可逆的相变,α-MoO3的容量迅速下降。另外,低电子传导率和慢反应动力学也限制了这种材料的应用。早在2007年,武汉理工大学麦立强教授提出预锂化的办法,提升三氧化钼的结构稳定性。近期有文献表明氧空位能提高部分材料的电化学性能。

近日,武汉理工大学麦立强课题组 在α-MoO3纳米带的基础上,通过可控等离子体刻蚀制备了具有氧空位的α-MoO3-x,并将其用作LIB的正极材料。 结构表征证实经适当刻蚀(MoO3(II),氢气等离子刻蚀10分钟)后,所制备样品的范德华间隙(vdW间隙)扩大并且带隙减小,过度的刻蚀会导致材料碎裂严重且形貌破坏。电化学测试结果表明,MoO3(II)样品具有小的极化,较好的结构稳定性,更可逆的层间/层内Li存储位点以及更高的容量。综上所述,适当氧空位的引入明显减小了三氧化钼的带隙、增加了其范德华层间距,提高了材料的电子及离子电导率,因此提高了材料的容量(可逆性),倍率性能和循环稳定性。麦立强教授为本文通讯作者,文章共同第一作者为张国彬和熊腾飞。该文章“α-MoO3-x by Plasma Etching with Improved Capacity and Stabilized Structure for Lithium Storage”发表在国际顶级期刊Nano Energy上(影响因子:12.343)。




回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-7 23:43 , Processed in 0.081068 second(s), 33 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表