找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 1424|回复: 1
打印 上一主题 下一主题

[专家学者] 西南大学洁净能源与先进材料研究院蒋建

[复制链接]

49

主题

49

帖子

57

积分

注册会员

Rank: 2

积分
57
跳转到指定楼层
楼主
发表于 2017-8-22 08:24:28 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
蒋建,副教授,硕士生导师,新加坡南洋理工大学博士后,主要从事电化学储能方面的工作,成果已发表于Nature Com.,Adv. Mater.,Energy Environ. Sci.等杂志上。截至目前,以第一作者或通讯作者发表的SCI论文共15篇 (IF因子总和超过140), 参与发表的论文共计59篇,个人H-index达28,可检索论文总引用次数超过4500(它引次数>2800;发表文章列表详情请见http://www.researcherid.com/rid/F-9144-2011)。
    联系方式:Email:jjiang@swu.edu.cn;Scientific blog: http://blog.163.com/energy_storage/
研究方向:
a. Smart design of Co/Ni-based oxide/hydroxide nanostructured arrays for energy-storage applications;
(钴、镍基氧化物/氢氧化物纳米结构阵列设计及其储能机理研究)
b. Mass fabrication of bamboo-derived carbon microfibers for sustainable & low-cost Li-ion cell anodes;
(低成本竹碳纤维材料的制备及其储锂机理研究)
c. Smart design of hierarchical carbon-based hybrids for long lifespan Li-S cells;
(长寿命锂硫电池电极材料的设计及其储锂机理探究)
d. Fabrication of sustainable & low-cost cathode materials for Li-ion cells;
(可持续性&廉价正极材料的设计及其储锂机理探究)
代表性学术论文:
1 J. Jiang, J. P. Liu, X. T. Huang, X. W. Lou, etc. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Advanced Materials, 2012, 24, 5166-5180. (Review Article)
2 J. Jiang, J. P. Liu, Yu Ting, et al. CNTs/Ni Hybrid Nanostructured Arrays: Synthesis and Application as High-Performance Electrode Materials for Pseudocapacitor, Energy & Environmental Science, 2011, 4, 5000-5007.
3. J. Jiang, J. H. Zhu, W.Ai, Z. X. Fan, X.N. Shen, C. J. Zou, J. P. Liu, H. Zhang and T. Yu*, Evolution of Disposable Bamboo Chopsticks into Uniform Carbon Fibers: A Smart Strategy to Fabricate Sustainable Anodes for Li-ion Batteries, Energy & Environmental Science, 2014,7, 2670-2679.
4 J. Jiang, J. H. Zhu, Y. M. Feng, J. P. Liu and X. T. Huang, A novel evolution strategy to fabricate 3D hierachical interconnected core-shell Ni/MnO2 hybrid for Li-ion batteries, Chemical Communications, 2012, 48, 7471-7473.
5 J. Jiang, J. P. Liu, X. T. Huang, etc. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes, Nanoscale, 2011, 3, 45-58. (Review Article)
6 J. Jiang, J. S. Luo, J. H. Zhu, X. T. Huang, J. P. Liu* and Ting Yu*, Diffusion-Controlled Evolution of Core-Shell Nanowire Arrays into Integrated Hybrid Nanotube Arrays for Li-Ion Batteries, Nanoscale, 2013, 5, 8105-8113.
7 J. Jiang, J. P. Liu, X. T. Huang, etc. Co–Fe layered double hydroxide nanowall array grown from an alloy substrate and its calcined product as a composite anode for lithium-ion batteries, Journal of Materials Chemistry, 2011, 21, 15969-15794.
8 J. Jiang, J. P. Liu, et al. Large-Scale Uniform α-Co(OH)2 Long Nanowire Arrays Grown on Graphite as Pseudocapacitor Electrodes, ACS Applied Materials & Interfaces, 2011, 3, 99–103.
9 J. Jiang, J. P. Liu, R. M. Ding, X. X. Ji, Y. Y. Hu, etc. Direct Synthesis of CoO Porous Nanowire Arrays on Ti Substrate and Their Application as Lithium-Ion Battery Electrodes, Journal of Physical Chemistry C, 2010, 114, 929-932. (Highlighted by the Website of “JPCC”)
10 J. Jiang, J. P. Liu, X. T. Huang, Y. Y. Li, R. M. Ding, X. X. Ji, Y. Y. Hu, Q. B. Chi, etc., General Synthesis of Large-Scale Arrays of One-Dimensional Nanostructured Co3O4 Directly on Heterogeneous Substrates, Crystal Growth & Design, 2010, 10, 70-75.
11 J. Jiang, J. H. Zhu, J. P. Liu, X.T. Huang, Co-Fe Mixed Oxide Nanoneedle-on-Nanowall Arrays on Conductive Substrate: Synthesis and Field Emission, Science of Advanced Materials, 2012, 4, 346-350. (Invited Paper for Special Issue on Optoelectronic nanomaterials and devices)
12 J. Jiang, J. H. Zhu, W. Ai, X. L. Wang, Y. L. Wang, H. Wei, T. Yu, Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells, Nature Communications, 2015, 6, 8622.
13 J. P. Liu, J. Jiang, C. W. Cheng, H. X. Li, H. J. Fan, etc., Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High-Performance Pseudocapacitive Materials, Advanced Materials, 2011, 23, 2076–2081. (Selected as "Frontispiece Feature Paper"; Highlighted by "Nature Asia Materials" and "Nanowerk").

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

60

主题

72

帖子

102

积分

注册会员

Rank: 2

积分
102
沙发
发表于 2020-6-18 14:10:27 | 只看该作者
西南大学材料与能源学院蒋建课题组提出了一种正极引入多功能NiFe2O4量子点以最小化碳使用量的设计方案,文章第一作者为研究生二年级学生李宁,该工作成功发表在《Nano-Micro Letters》上,标题为“Curtailing Carbon Usage with Addition of Functionalized NiFe2O4 Quantum Dots: Toward More Practical S Cathodes for Li-S Cells”。该成果表明,引入的NiFe2O4量子点具有良好的导电性、高的振实密度 (~1.32 g cm-3)、低的比表面积 (~19.9 m2 g-1)且对多硫化物具有极好的化学吸附和催化作用。同时,选用NiFe2O4量子点作为碳添加剂替代品,使正极整体碳含量降低到5%水平,从而避免电解液的过度消耗,确保特定能量密度参数。为了验证NiFe2O4量子点的多功能化,我们特意在不加LiNO3电解液情况下评估了电池的电化学性能。代表性示意图如下所示:
图1:NiFe2O4量子点工作原理示意图
超高能量密度的锂硫电池仍然面临很多问题,诸如电导率低,体积膨胀效应,穿梭效应等。目前将具有优良功能(如气孔/官能团、高比表面积)的多种碳质材料巧妙组合仍是解决上述问题的主流方法。然而,在电极设计中广泛使用导电碳填料将会导致电解液过度消耗,从而阻碍锂硫电池高能量密度的实现。因此,我们从减少碳用量出发提出建设性策略,旨在构建更高效、实用的锂硫电池。

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-14 11:53 , Processed in 0.089185 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表