找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 559|回复: 0
打印 上一主题 下一主题

[专家学者] 中国石油大学(华东)化学化工学院生物工程与技术中心徐海

[复制链接]

31

主题

31

帖子

35

积分

新手上路

Rank: 1

积分
35
跳转到指定楼层
楼主
发表于 2017-11-19 09:00:28 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

姓名: 徐海

职称:教授/博导

系属:生物工程与技术中心

最高学位:博士

学科:化学工程与技术

所学专业:生物化工;生物材料

电子邮箱:xuh@upc.edu.cn

联系电话:13863936926/0532-86981569

地址邮编:山东省青岛市黄岛区长江西路66号中国石油大学(华东)化学工程学院,266580

个人主页:

学习与工作经历

学习经历:

1998/09 – 2002/12,石油大学(华东),化学化工学院应用化学系,博士研究生

1994/09 – 1997/07,石油大学(华东),炼制系,硕士研究生

1989/09 – 1993/07,石油大学(华东),炼制系,大学本科

工作经历:

2008/12至今,中国石油大学(华东),生物工程与技术中心,教授

2008/09 – 2009/08,英国曼彻斯特大学,物理及天文学院,英国皇家学会访问学者

2003/10 – 2008/11,中国石油大学(华东),化学化工学院化学系/生物工程与技术中心,副教授

2003/09 – 2005/12,英国曼彻斯特大学,物理及天文学院,博士后

1998/10 – 2003/09,石油大学(华东),化学化工学院化学系,讲师

1993/07 – 1998/09,石油大学(华东),炼制系,助教

研究方向
生物材料与工程、生物胶体与生物界面化学

学术兼职

中国化学会会员、中国生物物理学会会员;多种国际学术期刊审稿人

主讲课程
《生物化学》(本科生,48学时),《生物化学与工程》(研究生,48学时)

指导研究生
在读学生:

博士研究生8名,硕士研究生3名

已毕业学生:

博士研究生11名,硕士研究生30名

承担科研课题
在研项目:

(1)国家自然科学基金面上项目(21673293),基于肽自组装纳米金属酶的设计、结构构筑与性能研究,主持

(2)国家自然科学基金面上项目(21373270),基于酶促反应的短肽自组装水凝胶构筑、性能调控及其在细胞培养中的应用,主持

已完成项目:

(1)教育部新世纪优秀人才支持计划(NCET-11-0735),纳米催化材料的仿生可控合成,主持

(2)山东省自然科学杰出青年基金(JQ201105),肽分子自组装及其功能化,主持

(3)国家自然科学基金面上项目(21071151),基于多肽分子设计和性质调控的生物矿化界面作用机制研究,主持

(4)国家自然科学基金面上项目(20773164),两亲性多肽的分子设计、界面吸附与自组装研究,主持

获奖情况

荣誉称号
山东省自然科学杰出青年基金(2011年)、教育部新世纪优秀人才支持计划(2011年)和山东省优秀博士论文(2004年)获得者;校劳动模范(2009年、2011年)、优秀研究生指导教师(2014年)

著作
专著《重质油化学组成与转化理论》,中国石油大学出版社,2008.12,参编者之一
论文

已发表SCI论文100余篇,近年以通讯作者发表的代表性论文如下:

(1)     Hydrogelation of the short self-assembling peptide I3QGK regulated by transglutaminase and use for rapid hemostasis. ACS Appl. Mater. Interfaces2016, 8, 17833–17841.

(2)     Amino acid side chains affect the bioactivity of designed short peptide amphiphiles. J. Mater. Chem. B 2016, 4, 2359-2368.

(3)     Surface physical activity and hydrophobicity of designed helical peptide amphiphiles control their bioactivity and cell selectivity. ACS Appl. Mater. Interfaces 2016, 8, 26501–26510.

(4)     Enzymatic regulation of self-assembling peptide A9K2 nanostructures and hydrogelation with highly selective antibacterial activities. ACS Appl. Mater. Interfaces 2016, 8, 15093–15102.

(5)     Interplay between intrinsic conformational propensities and intermolecular interactions in the self-assembly of short surfactant-like peptides composed of leucine/isoleucine. Langmuir,2016, 32, 4662–4672.

(6)     Tuning one-dimensional nanostructures of bola-like peptide amphiphiles by varying the hydrophilic amino acids. Chem. Eur. J., 2016, 22, 11394–11404.

(7)     Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. J. Mater. Chem. B 2016, 4, 152–161.

(8)     High selective performance of designed antibacterial and anticancer peptide amphiphiles. ACS Appl. Mater. Interfaces 2015, 7, 17346–17355.

(9)     Copper(II)-mediated self-assembly of hairpin peptides and templated synthesis of CuS nanowires. Chem. Asian J. 2015, 10, 1953-1958.

(10)  Different nanostructures caused by competition of intra- and inter-β-sheet interactions in hierarchical self-assembly of short peptides. J. Colloid Interface Sci. 2016, 464, 219-228.

(11)  Intrinsic defect formation in peptide self-assembly. Appl. Phys. Lett. 2015, 107, 043701.

(12)  Synthesis of 1D silica nanostructures with controllable sizes based on short anionic peptide self-assembly. J. Phys. Chem. B 2015, 119, 12059-12065.

(13)  Solvent controlled structural transition of KI4K self-assemblies: from nanotubes to nanofibrils. Langmuir 2015, 31, 12975-129

(14)  Self-assembly and nanoaggregation of a pH responsive DNA hybrid amphiphile. Soft Matter 2015, 11, 1748-1754.

(15)  Self-assembled two-dimensional thermoresponsive microgel arrays for cell growth/detachment control. Biomacromolecules 2014, 15, 4021-4031.

(16)  Molecular origin of the self-assembled morphological difference caused by varying the order of charged residues in short peptides. J. Phys. Chem. B 2014, 118, 12501-12510.

(17)  High cell selectivity and low-level antibacterial resistance of designed amphiphilic peptide G(IIKK)3I-NH2. ACS Appl. Mater. Interfaces 2014, 6, 16529-14536.

(18)  Controlled silica deposition on self-assembled peptide nanostructures via varying molecular structures of short amphiphilic peptides. Soft Matter 2014, 10, 7623-7629.

(19)  Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions. ACS Appl. Mater. Interfaces 2014, 6, 14360-14369.

(20)  Surface properties of nucleolipids and photo-controlled release of hydrophobic guest molecules from their micellar aggregates. Soft Matter 2014, 10, 7218-7224.

(21)  Molecular mechanisms of anticancer action and cell selectivity of short α-helical peptides. Biomaterials 2014, 35, 1552-1561.

(22)  Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013, 29, 13457-13464.

(23)  Solubilization and stabilization of isolated Photosystem I complex with lipopeptide detergents. PLoS One 2013, 8, e76256.

(24)  Thermoresponsive microgel films for harvesting cells and cell sheets. Biomacromolecules 2013, 14, 3615-3625.

(25)  Short peptide-directed synthesis of one-dimensional platinum nanostructures with controllable morphologies. Scientific Reports 2013, 3, doi:10.1038/srep02565.

(26)  Controlled release of hydrophilic guest molecules from photoresponsive nucleolipid vesicles. ACS Appl. Mater. Interfaces 2013, 5, 6232-6236.

(27)    Dual modes of antitumor action of an amphiphilic peptide A9K. Biomaterials 2013, 34, 2731-2737.

(28)    Crystal growth of calcite mediated by ovalbumin and lysozyme: atomic force microscopy study. Crystal Growth Des. 2013, 13, 1583-1589.

(29)    Designed short RGD peptides for one-pot aqueous synthesis of intergrin-binding CdTe and CdZnTe quantum dots. ACS Appl. Mater. Interface 2012, 4, 6362-6370.

(30)    Biomimetic synthesis of silica nanostructures with controllable morphologies and sizes through interfacial interactions. Chem. Commun. 2012, 48, 9415-9417.

(31)    Immobilization of lipases on alkly silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PLoS One2012, 7, e43478.

(32)    Controllable stabilization of poly(N-isopropylacrylacryamide)-based microgel films through biomimetic mineralization of calcium carbonate. Biomacromolecules 2012, 13(8), 2299-2308.

(33)    Dissolution of the calcite (104) face under specific calcite-aspartic acid interaction as revealed by in site atomic force microscopy. Crystal Growth Des. 2012, 12, 2594-2601.

(34)    Interfacial adsorption of cationic peptide amphiphiles: a combined study of in situ spectroscopic ellipsometry and liquid AFM. Soft Matter 2012, 8, 645-652.

(35)    Molecular mechanism of antibacterial and antitumor actions of designer surfactant-like peptides. Biomaterials 2012, 33, 592-603.

(36)    Designed antimicrobial and antitumor peptides with high selectivity. Biomacromolecules 2011, 12(11), 3839-3843.

(37)    Effects of anions on nanostructuring of cationic amphiphilic peptides. J. Phys. Chem. B 2011, 115(41), 11862-11871.

(38)    Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. Eur. J. 2011, 17, 13095-13102.

(39)    Molecular modulation of calcite dissolution by organic acids. Crystal Growth Des. 2011, 11, 3153-3162.

(40)    Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates. Chem. Mater. 2011, 23, 2466-2474.

(41)    Self-assembly of short Aβ (16-22) peptides: the effect of terminal capping and the role of electrostatic interaction. Langmuir2011, 27, 2723-2730.

(42)    Interfacial adsorption of lipopeptide surfactants at the silica/water interface studied by neutron reflection. Soft Matter 2011, 7, 1777-1788.

(43)    Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem. Mater. 2010, 22, 5165-5173.

(44)    Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480-3498.

(45)    Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One 2010, 5, e10233.

(46)    Influence of ovalbumin on CaCO3 precipitation during in vitro biomineralization. J. Phys. Chem. B 2010, 114, 5301-5308.

(47)    Antibacterial activities of short designer peptides: a link between propensity for nanostructuring and capacity for membrane destabilization. Biomacromolecules2010, 11, 402-411.

(48)    Dynamic Self-assembly of Surfactant-like Peptides A6K and A9K. Soft Matter 2009, 5, 3870-3878.

(49)    Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization. J. Phys. Chem. B2009, 113, 8975-8982.

(50)    Hydrophobic region induced transitions in self-assembled peptide nanostructures. Langmuir2009, 25, 4115-4123.

(51)     Lysozyme mediated calcium carbonate mineralization. J. Colloid and Interface Sci. 2009, 332, 96-103.

专利
(1)中国发明专利(ZL 201510590566.9),一种两亲性自组装超短肽纳米止血材料

(2)中国发明专利(ZL201310328915.0),一种新型抗菌肽

(3)中国发明专利(ZL201510830665.x),一种可用于细胞粘附的水凝胶及其制备方法

(4)中国发明专利(ZL201510830551.5),一种FeCl3调控的智能型多肽水凝胶、制备方法及其应用

(5)中国发明专利(ZL201510154911.4),含有偶氮苯光敏基团的脂肽分子表面活性剂及其合成方法

(6)中国发明专利(ZL201510342412.8),具有近红外响应性的脂肪羧酸分子及其制备方法

(7)中国发明专利(ZL201510044728.9),一种两亲性脂核酸的制备方法


  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-5-22 05:51 , Processed in 0.102031 second(s), 37 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表