找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 4870|回复: 3
打印 上一主题 下一主题

[专家学者] 中山大学化学学院化学系卢锡洪

[复制链接]

158

主题

173

帖子

199

积分

注册会员

Rank: 2

积分
199
跳转到指定楼层
楼主
发表于 2018-3-30 16:39:39 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
卢锡洪,中山大学化学学院教授,2018年获“优秀青年基金”资助,中山大学“生物无机与合成化学教育部重点实验室”固定研究人员。2008年6月、2013年6月分别获中山大学应用化学学士学位、物理化学博士学位;2011.9-2013.5美国加州大学Santa Cruz分校联合博士培养、2013年7月聘为中山大学化学与化学工程学院讲师,2015年2月晋升为副教授。主要从事过新型能源纳米材料与水系电化学储能器件的研究工作,在功能纳米碳材料与过渡金属基储能材料和柔性固态超级电容器及锌离子电池研究面取得系列创新性研究成果。近五年来以第一作者/通讯作者身份发表SCI收录论文70余篇(包括Adv. Mater. 13篇、Angew. Chem. 2篇、Chem. Soc. Rev. 1篇、Energy Environ. Sci. 2篇、Adv. Energy. Mater. 3篇、Nano Lett. 3篇、Adv. Funct. Mater. 2篇、Chem. Sci. 1篇和Nano Energy 3篇),其中23篇入选为ESI高被引论文。论文被SCI他引9000余次,H因子为55;获授权国家发明专利4 项。

基本情况
姓名:卢锡洪
性别:男
出生年月:1985-05
籍贯:广东中山
职位:
博士,教授,硕士生导师
联系方式
电话:86-20-8411 1952
传真:86-20-84112245
通讯地址:广东省广州市中山大学化学与化学工程学院
邮编:510275
教育经历
2008.09—2013.07  中山大学化学与化学工程学院 理学博士;   
2011.09—2013.05  美国加州大学圣克鲁兹分校化学与生物系联合培养博士;   
2004.09—2008.07  中山大学化学与化学工程学院理学学士。  
工作经历
2015.02—至今      中山大学化学与化学工程学院副教授;
2015.07—2015.08  香港科技大学化学系访问学者;
2013.07—2015.01 中山大学化学与化学工程学院讲师。
讲授课程
《普通化学》、《无机化学》、《催化化学》及《物理化学实验》。
科研方向
新型纳米能源材料及电化学储能器件(超级电容器、锂离子电池、微生物燃料电池等)
科研项目
1. 广东省特支计划科技创新青年拔尖人才项目,2015TQ01C205,2016-2019;
2. 广州市珠江科技新星专项,201505031747408,2016.05-2019.04;
3. 广东省应用型科技研发专项资金项目,2015B090927007,2015.09-2018.08
4. 国家自然青年科学基金项目,21403306,2015.01-2017.12;
5. 广东省杰出青年科学基金,2014A030306048,2015.01-2019.01;
6. 高校基本科研业务费青年教师培育项目,151gpy24,2015.01-2016.12;
7. 中山大学青年教师启动基金,3321400,2013.12-2014.12;
8. 中山大学实验室开放基金,KF201315,2013.09-2014.09。
获奖情况
2016  中山大学化学学院87校友奖
2015  广东省自然科学奖一等奖(第三完成人)
2015  广东省优秀博士学位论文
2014  中山大学化工学院芙兰励教奖(优秀青年教师奖)
2013  第八届中国青少年科技创新奖
论著一览
2017
82. Yu MH, Lin D, Feng HB, Zeng YX, TongYX, and Lu XH*. Boosting Energy Density of Carbon BasedAqueous Supercapacitors via Optimizing Surface Charge. Angew. Chem.Int. Ed. 2017, Accepted. (VIP)
81. Zeng YX, Zhang XY, Meng Y, Yu MH, YiJN, Wu YQ,* Lu XH* and Tong YX. Achieving Ultrahigh EnergyDensity and Long Durability in a Flexible Rechargeable Quasi-Solid-StateZn-MnO2 Battery. Adv. Mater. 2017, Accepted.
80. Deng SJ, Zhong Y, Zeng YX, Wang YD, YaoZJ, Yang F, Lin SW, Wang XL, Lu XH,* Xia XH,* and  Tu JP. Directional Construction of Vertical Nitrogen doped 1T-2H MoSe2/GrapheneShell/Core Nanoflake Arrays for Efficient Hydrogen Evolution Reaction. Adv.Mater. 2017, Accepted.
79. Yu MH, Wang ZK, Hou C, Wang ZL, LiangCL, Zhao CY, Tong YX, Lu XH* and  Shihe Yang*. Nitrogen-Doped Co3O4 Mesoporous Nanowire Arrays as an Additive-FreeAir-Cathode for Flexible Solid-State Zinc-Air Batteries. Adv. Mater. 2017,Accepted.
78. Zheng DZ, Feng HB, Zhang XY, He XJ, YuMH, Lu XH* and Tong YX*. Porous MoO2 Nanowiresas Stable and High-Rate Negative Electrode for ElectrochemicalCapacitors. Chem. Commun. 2017,  53,3929-3932. (Outside front cover)
77. Yi JN, Qing Y, Wu CT, Zeng YX, WuYQ,* Xihong Lu* and Tong YX. Lignocellulose-derived Porous Phosphorus-dopedCarbon as Advanced Electrode for Supercapacitors. J. Power Sources, 2017,351, 130-137.
76. Tang HL*, Zeng Y, Zeng YX, Wang R, CaiSC, Liao C, Cai HP, Lu XH* and Tsiakaras P*. Iron-embedded nitrogendoped carbon frameworks as robust catalyst for oxygen reduction reaction inmicrobial fuel cells. Appl. Catal. B: Environ., 2017,202, 550–556.
75. Zheng DZ, Zhu L, Feng HB, Yu MH, LuXH* and Tong YX*. Co3O4@Co NanoparticlesEmbedded Porous N-Rich Carbon Matrix for Efficient Oxygen Reduction. Part.Part. Syst. Charact. 2017, Accepted.
74. Zheng DZ, He XJ, Xu W, and LuXH*. Self-Surface-Passivation of Titanium Doped Hematite Photoanode forEfficient Solar Water and Formaldehyde Oxidation. Mater. Res. Bull. 2017,Accepted.
2016
73. Zeng YX, Lin ZQ, Meng Y, Wang YC, YuMH, Lu XH* and Tong YX. Flexible Ultrafast Aqueous RechargeableNi//Bi Battery Based on Highly Durable Single-Crystalline BismuthNanostructured Anode. Adv. Mater. 2016, 28, 9188–9195.
72. Yu MH, Cheng XY, Zeng YX, Wang ZL, TongYX, Lu XH* and Yang SH*. Dual-Doped Molybdenum Trioxide Nanowires:A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and MicrobialFuel Cells. Angew. Chem. Int. Ed. 2016, 128, 6874–6878. (VIP)
71. Zeng YX, Yu MH, Meng Y, Fang PP, LuXH* and Tong YX. Iron-based Supercapacitor Electrodes: Advances andChallenges. Adv. Energy Mater., 2016, 1601053.
70. Zhang HZ, Qiu WD, Zhang YF, Han Y, YuMH, Wang ZF, Lu XH* and Tong YX. Surface Engineering of CarbonFiber Paper for Efficient Capacitive Energy Storage. J. Mater. Chem.A, 2016, 4, 18639–18645.
69. Cheng G, Xie SL, Lan B, Zheng XY, Ye F,Sun M, Lu XH*  and Yu L*. Phase Controllable Synthesis ofThree-Dimensional Star-like MnO2 Hierarchical Architectures as Highly Efficientand Stable Oxygen Reduction Electrocatalysts, J. Mater. Chem. A,2016, 4, 16462–16468.
68. Xu W,* Chen JH, Yu MH, Zeng YX, LongYB, Lu XH* and Tong YX. Sulphur-doped Co3O4 Nanowires as AdvancedNegative Electrode for High-energy Asymmetric Supercapacitors. J.Mater. Chem. A, 2016, 4, 10779 – 10785.
67. Wang ZF, Han Y, Zeng YX, Qie YL, WangYC, Zheng DZ, Lu XH* and Tong YX. Activated Carbon Fiber Paper withExceptional Capacitive Performance as Robust Electrode forSupercapacitors. J. Mater. Chem. A, 2016, 4, 5828–5833.
66. Yu MH, Wang ZL, Han Y, Tong YX, LuXH* and Yang SH*. Recent progress in the development of anodes forasymmetric Supercapacitors. J. Mater. Chem. A, 2016, 4,4634–4658.
65. Chen MQ, Zeng YX, Zhao YT, Yu MH, ChengFL, Lu XH* and Tong YX*. Monolithic three-dimensional grapheneframeworks derived from inexpensive graphite paper as advanced anodes formicrobial fuel cells. J. Mater. Chem. A, 2016, 4, 6342–6349.
64. Zhang XY, Yu MH, Zhao SB, Li F, Hu XL,Guo SB, Lu XH*, and Tong YX*. 3D V3O7•H2O/Partially ExfoliatedCarbon Nanotube Composites with Significantly Improved Lithium StorageAbility. Part. Part. Syst. Charact. 2016, 33, 531–537.
63. Zhang XY, Yu MH, Zhao SB, Li F, Hu XL,Guo SB, Lu XH*, and Tong YX*. Recent advances and challenges ofstretchable supercapacitors based on carbon materials. Sci ChinaMater. 2016, 59(6): 475–494.
2015
62. Wang W, Liu WY, Zeng YX, Han Y, YuMH, Lu XH*, and Tong YX. A Novel Exfoliation Strategy toSignificantly Boost the Energy Storage Capability of Commercial Carbon Cloth, Adv.Mater. 2015, 27, 3572–3578. (ESI -Highly Cited Papers)
61. Yu YH, Han Y, Cheng XY, Hu L, Zeng YX,Chen MQ, Lu XH*, and Tong YX. Holey Tungsten Oxynitride Nanowires:Novel Anodes Efficiently Integrate Microbial Chemical Energy Conversion andElectrochemical Energy Storage, Adv. Mater. 2015, 27,3085–3091.
60. Zeng YX, Han Y, Zhao YT, Zeng Y, Yu MH,Liu YJ, Tang HL*, Tong YX, and Lu XH*. Advanced Ti DopedFe2O3@PEDOT Core/Shell Anode for High-Energy Asymmetric Supercapacitors. Adv.Energy Mater. 2015, 5, 1402176.
59. Yu MH, Zeng Y, Han Y, Cheng XY, ZhaoWX, Liang CL, Tong YX, Haolin Tang*, and Lu XH*. Valence-OptimizedVanadium Oxide Supercapacitor Electrodes Exhibit Ultrahigh capacitance andSuper-Long Cyclic Durability of 100000 Cycles. Adv. Funct. Mater. 2015,25, 3534–3540.
58. Yu MH, Huang YC, Li C, Zeng YX, Wang W,Li Y, Fang PP, Lu XH*, and Tong YX. Macroscopically BuildingThree-Dimensional Graphene Frameworks for Energy Storage and Catalysis. Adv.Funct. Mater. 2015, 25, 324–330. (ESI -Highly Cited Papers)
57. Balogun MS, Yu MH, Huang YC, Li C, FangPP, Liu Y, Lu XH*, and Tong YX. Binder-Free Fe2N Nanoparticles onCarbon Textile with High Power Density as Novel Anode for High-PerformanceFlexible Lithium Ion Batteries. Nano Energy 2015, 11, 348-355.(ESI -Highly Cited Papers)
56. Li MY, He XJ, Zeng YX. Chen MQ, ZhangZY, Yang H, Fang PP*, Lu XH*, and Tong YX*. Solar-Microbial HybridDevice based on Oxygen Deficient Niobium Pentoxide Anodes for SustainableHydrogen Production, Chem. Sci. 2015, 6, 6799–6805.
55. Tang HL*, Cai SC, Xie SL, Wang ZB, TongYX, Pan M, and Lu XH*. Metal Organic Framework Derived Dual Metaland Nitrogen doped Carbon as Efficient and Robust Oxygen Reduction ReactionCatalysts for Microbial Fuel Cells. Adv. Sci. 2015,1500265.
54. Yu MH, Qiu WT, Wang FX, Zhai T, FangPP, Lu XH*, and Tong YX.* Three Dimensional Architectures: Design,Assembly and Application in Electrochemical Capacitors. J. Mater.Chem. A, 2015, 3, 15792–15823.
53. Balogun M, Qiu W.T, Wang W, Fang PP, LuXH*, and Tong YX.* Recent Advances in Metal Nitrides as High PerformanceElectrode Materials for Energy Storage Devices. J. Mater. Chem. A,2015, 3, 1364–1387. (ESI -Highly Cited Papers)
52. Li N, Xia WY, Wang J, Liu ZL, Li QY,Chen SZ, Xu CW*, and Lu XH*. Manganese Oxides Supported onHydrogenated TiO2 Nanowire Array Catalysts for the Electrochemical OxygenEvolution Reaction in Water Electrolysis. J. Mater. Chem. A,2015, 3, 21308-21313.
51. Balogun M, Qiu W.T, Jian JH, Huang YC,Luo Y, Yang H, Liang CL, Lu XH*, and Tong YX*. Vanadium NitrideNanowire Supported SnS2 Nanosheets with High Reversible Capacity as AnodeMaterial for Lithium Ion Batteries. ACS Appl. Mater. Interfaces,2015, 7, 23205–23215.
50. Balogun M, Zhu YK, Qiu WT, Luo Y, HuangYC, Liang CL, Lu XH*, and Tong YX*. Chemically Lithiated TiO2Heterostructured Nanosheet Anode with Excellent Rate Capability and Long CycleLife for High-Performance Lithium-Ion Batteries. ACS Appl. Mater.Interfaces, 2015, 7, 25991−26003.
49. Xie SL, Wei WJ, Huang SC, Li MY, FangPP, Lu XH*, and Tong YX.* Efficient and Stable PhotoelctrochemicalWater Oxidation by ZnO Photoanode Coupled with Eu2O3 as Novel Oxygen EvolutionCatalyst. J. Power Sources, 2015, 297, 9-15.
48. Xie SL, Huang SC, Wei WJ, Yang XZ, LiuY*, Lu XH*, and Tong YX. Chitosan Waste-Derived Co and N Co-dopedCarbon Electrocatalyst for Efficient Oxygen Reduction Reaction. ChemElectroChem,2015, 2, 1806-1812.
2014
47. Lu XH, Xie SL, Yang H, TongYX. Ji HB*. Photoelectrochemical Hydrogen Production from Biomass Derivativesand Water. Chem. Soc. Rev., 2014, 43, 7581–7593.
46. Yu MH, Zhang YF, Zeng YX, Balogun MS,Mai KC, Zhang ZS*, Lu XH*, and Tong YX. Water Surface AssistedSynthesis of Large-Scale Carbon Nanotube Film for High-Performance and StretchableSupercapacitors. Adv. Mater., 2014, 26, 4724–4729.
45. Lu XH, Zeng YX, Yu MH, ZhaiT, Liang CL, Xie SL, Muhammad-Sadeeq B, Tong YX*. Oxygen-Deficient HematiteNanorods as High-Performance and Novel Negative Electrode for FlexibleAsymmetric Supercapacitors. Adv. Mater., 2014, 26,3148–3155. (ESI -Highly Cited Papers)
44. Wang XF†, Lu XH†, Liu B,Chen D, Tong YX*, and Shen GZ*. Flexible Energy-Storage Devices: DesignConsideration and Recent Progress, Adv. Mater., 2014, 26,4763–4782. (Co first author) (ESI -Highly Cited Papers)
43. Lu XH, Yu MH, Wang GM, TongYX* and Li Y.* Flexible Solid-State Supercapacitors: Design, Fabrication andApplications, Energy Environ. Sci., 2014, 7, 2160-2181. (ESI-Highly Cited Papers)
42. Lu XH, Liu TY, Zhai T. WangGM, Yu MH, Xie SL, Ling YC, Liang CL, Tong YX*, and Li Y*. Improving CyclingStability of Metal Nitride Supercapacitor Electrodes with a Thin CarbonShell. Adv. Energy Mater., 2014, 4, 1300994.
41. Yu MH, Wang W, Li C, Zhai T, LuXH*, and Tong YX.* Scalable Self-Growth of Ni@NiO Core-Shell Electrode withUltrahigh Capacitance and Super Long Cyclic Stability forSupercapacitors. NPG Asia Mater., 2014, 6, e129.
40. Xie SL, Li MY, Wei WJ, Zhai T, Fang PP,Qiu QL, Lu XH*, and Yexiang Tong. Gold Nanoparticles InducingSurface Disorders of Titanium Dioxide Photoanode for Efficient WaterSplitting. Nano Energy, 2014, 10, 313-321.
39. Zhai T, Xie SL, Yu MH, Fang PP, LiangCL, Lu XH*, and Tong YX.* Oxygen Vacancies Enhancing CapacitiveProperties of MnO2 Nanorods for Wearable Asymmetric Supercapacitors. NanoEnergy, 2014, 8, 255-263.
38. Li MY, Hu Y, Xie SL, Huang YC, TongYX,* Lu XH.* Heterostructured ZnO/SnO2-x Nanoparticles forEfficient Photocatalytic Hydrogen Production. Chem. Commun.,2014, 50, 4341-4343.
37. Gan JY, Lu XH*, and TongYX.* Towards High Efficient Photoanodes: Boosting Sunlight-Driven SemiconductorNanomaterials for Water Oxidation. Nanoscale, 2014, 6,7142-7164.
36. Huang YC, Li HB, Balogun MS, Liu WY,Tong YX, Lu XH*, and Ji HB. * Oxygen Vacancy Induced BismuthOxyiodide with Remarkably Increased Visible-light Absorption and SuperiorPhotocatalytic Performance. ACS Appl. Mater. Interfaces,2014, 6, 22920−22927.
35. Balogun M, Qiu WT, Wang W., Fang P.P., Lu XH*, and Tong YX.* Recent Advances in Metal Nitrides asHigh-Performance Electrode Materials for Energy Storage Devices. J.Mater. Chem. A, 2014, 11, 348–355.
34. Balogun MS, Yu MH, Li C, Zhai T, LiuY, Lu XH*, and Tong XY.* Facile Synthesis of Titanium NitrideNanowires on Carbon Fabric for Flexible and High-Rate Lithium IonBatteries. J. Mater. Chem. A, 2014, 2, 10825–10829.
33. Li ZY, Liu ZL, Liang JC, Xu CX,*and Lu XH*. Facile synthesis of Pd-Mn3O4/C as High-EfficientElectrocatalyst for Oxygen Evolution Reaction. J. Mater. Chem. A,2014, 2, 18236 – 18240.
32. Liang CL, Zhai T, Wang W, Chen J, ZhaoWX, Lu XH,* and Tong YX.* Fe3O4/reduced graphene oxide withenhanced electrochemical performances towards lithium storage. J.Mater. Chem. A, 2014, 2, 7214-7220.
31. Liu Y, Xie SL, Liu CJ, Li JL, LuXH*, and Tong YX.* Facile synthesis of Tungsten Oxide Nanostructures forEfficient Photoelectrochemical Water Oxidation, J. Power Sources,2014, 269, 98–103.
30. Balogun M-S, Li C, Zeng YX, Yu MH, WuQL, Wu MM, Lu XH*, and Tong YX*. Titanium Dioxide@Titanium NitrideNanowires on Carbon Cloth with Remarkable Rate Capability for FlexibleLithium-Ion Batteries. J. Power Sources, 2014, 272, 946–953.
29. Zhang ZS,* Wang W, Li C, Wei L, ChenXJ, Tong YX, Mai KC, and Lu XH*. Highly conductive ethyleneevinylacetate copolymer/carbon nanotube paper for lightweight and flexiblesupercapacitors. J. Power Sources, 2014, 248, 1248-1255.
28. Zeng CH, Xie SL, Yu MH, Yang YY, LuXH*, and Tong YX.* Facile synthesis of large-area CeO2/ZnO nanotube arraysfor enhanced photocatalytic hydrogen evolution, J. Power Sources,2014, 247, 545-550
.27. Feng KJ, Li W, Xie SL, and LuXH*. Nickel Hydroxide Decorated Hydrogenated Zinc Oxide Nanorod Arrays withEnhanced Photoelectrochemical Performance, Electrochim. Acta,2014, 137, 108–113.
26. Xie SL, Zhai T, Zhu YJ, Li W, Qiu RL,Tong YX,* and Lu XH*. NiO Decorated Mo:BiVO4 Photoanode withEnhanced Visible-Light Photoelectrochemical Activity. Int. J.Hydrogen Energy, 2014, 39(10), 4820–4827.
25. Li C, Hu Y, Yu MH, Zhao WX, Liu P,*Tong YX, and Lu XH*. Nitrogen Doped Graphene Paper as HighlyConductive, and Light-weight Substrate for Flexible Supercapacitors. RSCAdv. 2014, 4, 51878–51883.
24. Zhang C, Zhang XY, Wang YC, Xie SL, LiuYi, Lu XH*, and Tong YX. Facile Electrochemical Synthesis of CeO2Hierarchical Nanorods and Nanowires with Excellent PhotocatalyticActivities. New J. Chem., 2014, 38 (6), 2581 – 2586.
2013
23. Lu XH, Yu MH, Wang GM, ZhaiT, Xie SL, Ling YC, Tong YX*, and Li Y*. H-TiO2@MnO2//H-TiO2@C Core-ShellNanowires for High Performance and Asymmetric Supercapacitors. Adv.Mater., 2013, 25, 267-272. (ESI -Highly Cited Papers)
22. Lu XH, Yu MH, Zhai T, WangGM, Xie SL, Liu TY, Liang CL, Tong YX*, and Li Y*. High Energy DensityAsymmetric Quasi-Solid-State Supercapacitor with Porous Vanadium NitrideNanowire Anode. Nano Lett., 2013, 13, 2628–2633. (ESI-Highly Cited Papers)
21. Xie SL, Zhai T, Li W, Yu MH, Liang CL,Gan JY, Lu XH*, and Yexiang Tong*. Hydrogen production from solardriven glucose oxidation over Ni(OH)2 functionalized electroreduced-TiO2nanowire arrays. Green Chem., 2013, 15, 2434-2440.
20. Zhai T, Wang FX, Yu MH, Xie SL, LiangCL, Li C, Xiao FM, Tang RH, Wu QX, Lu XH*, and Tong YX.* 3DMnO2/Graphene composites with large areal capacitance for high performanceasymmetric supercapacitors. Nanoscale, 2013, 5, 6790-6796.(ESI -Highly Cited Papers)
19. Yu MH, Zhai T, Lu XH*, ChenXJ, Xie SL, Li W, Liang CL, Zhao WX, Zhang LP, and Tong YX*, Manganese dioxidenanorod arrays on carbon fabric for flexible solid-state supercapacitors, J.Power Source, 2013, 239, 64-71. (ESI -Highly Cited Papers)
18. Zheng HM, Zhai T, Yu MH, Xie SL, LiangCL, Zhao WX, Zhang ZS*, and Lu XH*. TiO2@C core-shell nanowires forhigh-performance and flexible solid-state supercapacitors. J. Mater.Chem. C, 2013, 1, 225-229. ESI -Highly Cited Papers (2013 Most AccessedManuscripts for J. Mater. Chem. C)
17. Li W, Xie SL, Li MY, Ouyang XW, CuiGF, Lu XH*, and Tong YX*. CdS/CeOx heterostructured nanowires forphotocatalytic hydrogen production. J. Mater. Chem. A, 2013,1, 4190 – 4193.
16. Ouyang XW,* Li W, Xie SL, Zhai T, YuMH, Gan JY, and Lu XH*. Hierarchical CeO2 nanospheres as ahigh-efficient adsorbent for dyes removal, New J. Chem.,2013, 37 (3), 585-588.
2008-2012
15. Lu XH, Zhai T, Zhang, XH,Shen, YQ, Yuan LY, Hu B, Gong L, Chen J, Zhou J,* Tong YX,* Wang ZL.*WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High-PerformanceFlexible Supercapacitors. Adv. Mater., 2012, 24, 938–944.(ESI -Highly Cited Papers)
14. Lu XH, Wang GM, Zhai T, YuMH, Gan JY, Tong YX*,and Li Y*. Hydrogenated TiO2 Nanotube Arrays forSupercapacitors. Nano Lett. 2012. 12 (3), 1690–1696.(ESI -Highly Cited Papers)
13. Lu XH, Wang GM, Zhai T, YuMH, Xie SL, Ling YC, Liang CL, Tong YX*, and Li Y*. Stabilized TiN nanowirearrays for high-performance and flexible supercapacitors. NanoLett. 2012, 12 (10), 5376–5381. (ESI -Highly Cited Papers)
12. Yuan LY†, Lu XH†, Xu Xiao,Zhai T, Dai JJ, Zhang FC, Hu B, Wang X, Gong L, Chen J, Hu CG, Tong YX, ZhouJ,* and Wang ZL.* Flexible Solid-State Supercapacitors Based on CarbonNanoparticles-MnO2 Nanorods Hybrid Structure. ACS Nano,2012, 6 (1), 656-661. Co first author (Highlighted by Chemical &Engineering News) (ESI -Highly Cited Papers)
11. Lu XH, Wang GM, Xie SL, ShiJY, Li W, Tong YX,* Li Y.* Efficient Photocatalytic Hydrogen Evolution overHydrogenated ZnO Nanorod Arrays. Chem. Comm., 2012, 48,7717–7719.
10. Lu XH, Huang X, Xie SL,Zhai T, Wang CS, Zhang P, Yu MH, Li W, Liang CL, Tong YX.* ControllableSynthesis of Porous Nickel-Cobalt Oxide Nanosheets for Supercapacitors. J.Mater. Chem., 2012, 22 (26), 13357 – 13364.
9. Lu XH, Zheng DZ, Zhai T, LiuZQ, Huang YY, Xie SL, Tong YX*. Facile Synthesis of Large-area Manganese OxideNanorod Arrays as High-Performance Electrochemical Supercapacitor, EnergyEnviron. Sci., 2011, 4, 2915 – 2921. (ESI -Highly Cited Papers)
8. Lu XH, Zhai T, Cui HN, ShiJY,* Xie SL, Huang YY, Liang CL, and Tong YX.* Redox Cycles PromotingPhotocatalytic Hydrogen Evolution of CeO2 Nanorods, J. Mater. Chem.,2011, 21, 5569-5572.
7. Lu XH, Zheng DZ, Xu M, XieSL, Liu ZQ, Liang CL, Liu P,* Tong YX.* General Electrochemical Assembling toPorous Nanowires with High Adaptability in Water Treatment. CrystEngComm,2011, 13, 2451–2456.
6. Lu XH, Xie SL, Zhai T, ZhaoYF, Zhang P, Zhang YL, Tong YX.* Monodisperse CeO2/CdS HeterostructuredSpheres: One-pot Synthesis and Enhanced Photocatalytic Hydrogen Activity, RSCAdv., 2011, 1, 1207–1210.
5. Lu XH, Zheng DZ, Zhang P,Liu P, Tong YX.* Facile synthesis of free-standing CeO2 nanorods forphotoelectrochemical applications. Chem. Commun., 2010, 46,7721–7723.
4. Lu XH, Zheng DZ, Gan JY, LiuZQ, Liang CL, Liu P,* Tong YX.* Porous CeO2 nanowires/nanowire arrays:electrochemical synthesis and application in water treatment, J.Mater. Chem., 2010, 20, 7118–7122.
3. Lu XH Huang X, Xie SL,Zheng DZ, Liu ZQ, Liang CL, Tong YX.* Facile electrochemical synthesis ofsingle crystalline CeO2 octahedrons and their optical properties, Langmuir,2010, 26, 7569–7573.
2. Lu XH, Dong Wang, Li GR, SuCY, Dai-Bin Kuang,* Tong YX.* Controllable electrochemical synthesis ofhierarchical ZnO nanostructures on FTO glass, J. Phys. Chem. C,2009, 113, 13574–13582.
1.Lu XH, Li GR,* Zhao WX, Tong YX.*A simple electrochemical deposition route for the controllable growth ofCe4+-doped ZnO nanorods, Electrochimica Acta, 2008, 53,5180-5185.
相关成果
1. 卢锡洪; 王往; 曾银香;于明浩; 童叶翔. 一种大面积制备石墨烯化碳纸的方法及其制备的石墨烯化碳纸. ZL201410470758.1
2. 卢锡洪;于明浩; 童叶翔;方萍萍. 一种石墨烯纸及其制备方法和应用. ZL201310743046.8
3. 卢锡洪; 于明浩; 童叶翔. 一种MoS2/TiO2纳米复合材料及其制备方法. ZL201310324535.X
4. 翟腾; 卢锡洪; 童叶翔; 吴其修; 唐仁衡; 肖方明. 一种氧化锌纳米盘/石墨烯复合材料及其制备方法. ZL201310259347.3
5. 王成胜; 卢锡洪; 李伟; 李明阳; 刘鹏; 童叶翔. 一种具有一级磁相变的六元高熵合金及其制备方法. ZL201310059655.1

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

5

主题

11

帖子

17

积分

新手上路

Rank: 1

积分
17
沙发
发表于 2018-10-2 07:54:15 | 只看该作者
中山大学卢锡洪AM:ZIF衍生双功能催化剂作为柔性全固态锌空气电池基准正极的稳定限制策略

负载金属/金属氧化物的碳复合材料由于具有优异的电催化性质因而吸引了很多研究者的兴趣。然而,在合成过程中碳复合材料会经历严重的碳蒸发和金属物种的团聚,导致活性位点的消失和催化稳定性的下降。卢锡洪教授团队的研究工作采用Al2O3纳米层捕获挥发性的碳和氮物种,并且利用Zn/Co-ZIF的热解减轻了Co物种的团聚。得益于这种Al2O3纳米层限域策略,生长在碳布上的负载了衍生Co3O4的N掺杂的多孔炭表现出了优异的双功能催化性能。更重要的是,由此组装的柔性全固态锌空电池能够实现72.4 mW/cm3的最大能量密度和良好的循环稳定性。该工作为合理设计金属/碳复合催化剂、发展低成本二次储能设备提供了观点指导。

Zhu L, Zheng D, et al. A Confinement Strategy for Stabilizing ZIF‐Derived Bifunctional Catalysts as a Benchmark Cathode of Flexible All‐Solid‐State Zinc-Air Batteries[J]. Advanced Materials, 2018.
DOI: 10.1002/adma.201805268

回复 支持 反对

使用道具 举报

13

主题

21

帖子

23

积分

新手上路

Rank: 1

积分
23
板凳
发表于 2019-1-22 09:14:17 | 只看该作者
12月24日上午,中山大学卢锡洪副教授应邀做客浙江工业大学至真讲坛,与学院相关师生探讨交流了有关“水系电化学储能纳米材料的设计改性与器件研制”的课题。报告在子良B4会议室举行,由曹澥宏教授主持,相关专业师生参加了本次学术活动。


卢锡洪副教授主要针对水系储能电极材料的荷质传输、表/界面反应和电极材料与电解液理化性质的精确匹配等储能领域科学问题,系统研究金属氧化物和碳基纳米材料的构效关系及其调控规律,并将其应用于设计和研制高性能电极材料。报告中,卢老师首先介绍了该领域的研究背景,提出了金属氧化物理论电容高但导电性差和反应活性低的挑战,提出一种氧缺陷调控金属氧化物电容性能的方法。随后详细介绍了金属基复合结构可提升反应可逆性和容量:三维多孔网络结构提高电解液浸润性促进电子离子传输速率增加。然后,对电极-电极与电极-电解液匹配性优化进行了详细的讲解,包括正负极功函数匹配,电极/电解液界面反应动力学优化和表面电荷调控拓宽器件工作电压等。


学术报告结束后,卢老师和在座师生对学术研究中的相关问题进行了讨论与交流,随后曹老师和卢老师还提倡研究生在科研过程中一定要多深入思考。最后,本次报告在热烈的掌声中圆满结束。

回复 支持 反对

使用道具 举报

17

主题

27

帖子

29

积分

新手上路

Rank: 1

积分
29
地板
发表于 2019-2-22 09:10:26 | 只看该作者
Small综述:柔性锌离子电池的进展与挑战



随着电子技术的高速发展,柔性显示设备、健康监护仪、电子传感器和电子皮肤等可穿戴式/可植入电子器件的开发受到学术界及工业界越来越广泛的关注。而发展柔性电子器件的最大挑战之一是开发与之相适应的柔、轻、薄且安全的便携型储能器件。目前,锂离子电池广泛应用在便携式电子设备中。然而由于地球上的锂资源储量有限,有机体系电池存在着严重的安全隐患,发展柔性锂离子电池面临着诸多困境。就这一点而言,开发更安全、廉价的新型柔性储能体系变得更加具有吸引力。近年来,二次水系锌离子电池(zinc ion batteries, ZIBs)凭借其高安全性、易组装、高容量、低成本、环境友好和锌资源丰富等优势,在柔性储能设备中具有巨大的应用前景。与传统的碱性电池不同,ZIBs采用中性或弱酸性电解液,其储能机理是以Zn2+作为载体的“摇椅式”电池,即通过Zn2+在锌负极的溶解/沉积和Zn2+在正极的电化学嵌入/脱嵌,从而实现电能的可逆储存与释放。相比于传统碱性Zn电池,ZIBs呈现出优异的可充放性。近年来,ZIBs的研究成为多价金属离子电池领域中倍受关注的热点研究方向,并且已经取得巨大进展,这些研究对下一代高性能锌负极材料的复兴起了巨大作用。然而,柔性ZIBs的开发还面临着一系列科学和技术上的难题。首先,作为ZIBs的主要组成部分,正极材料存在着容量和寿命偏低等问题,ZIBs的正极材料未来的开发还有很大的提升空间。ZIBs的负极存在着枝晶生长(尤其在大电流下)和可逆欠佳等问题,而且水系ZIBs受限于水分解等因素,使得其面临着电压窗口偏窄等难题。此外,为了实现柔性ZIBs在柔性电子设备上的应用,电解液的合理选择和电池的设计组装方式上还需多方面的考虑。

基于此,来自于中山大学卢锡洪教授等人以Flexible Zn-Ion Batteries: Recent Progresses and Challenges为题在Small上发表综述性文章。作者总结了近年来快速发展且具有良好应用前景的水系ZIBs的最新代表性成果(电解液,电极材料,和器件组装技术),为柔性ZIBs的设计和改进提供了全面的知识和参考。该综述首先介绍了ZIBs的发展历程,详尽叙述了ZIBs的储能机理,重点讨论了锌负极存在的问题以及现有的解决策略,特别总结了ZIBs正极材料的储锌机理的分类和最新成果。接着,该综述进一步地总结了柔性ZIBs的设计与组装,包括柔性正负极的设计、凝胶电解液和电池结构设计。随后,作者总结了柔性锰基、钒基、普鲁士蓝基和其他柔性ZIBs的最新研究进展,并对不同种类的正极材料的优缺点进行了比较。最后,作者从柔性锌离子的电解液、电极材料、电池的结构设计等方面展望了ZIBs的未来发展方向与研究重点,并且对柔性ZIBs的商业化等问题进行了探讨和展望。

相关综述文章在线发表于Small (DOI: 10.1002/smll.201804760)上。



回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-6-10 00:25 , Processed in 0.094966 second(s), 36 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表