找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 908|回复: 2
打印 上一主题 下一主题

[专家学者] 同济大学化学科学与工程学院陈涛

[复制链接]

59

主题

62

帖子

68

积分

注册会员

Rank: 2

积分
68
跳转到指定楼层
楼主
发表于 2018-4-13 20:21:14 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
陈涛博士,同济大学化学科学与工程学院教授。分别于2006年、2009年获得郑州大学学士和硕士学位,2012年获得复旦大学博士学位,2012-2014年在美国凯斯西储大学(Case Western Reserve University)Liming Dai教授课题组做研究助理工作,2014年入选同济大学首批“基础学科高水平领航人才计划”加入同济大学化学科学与工程学院。2016年被评为“上海市高校特聘教授(东方学者)”;2016入选上海市青年拔尖人才计划;2017年入选上海市青年科技启明星计划。
陈涛,博士,教授,博士生导师
同济大学化学科学与工程学院
联系电话  +86-21-65985033
办公地址  赤峰路67号南校区高等技术学院318室
E-mail  tchen@tongji.edu.cn

一、研究方向
1.碳纳米材料的制备及功能化应用
2.电化学能量储存材料与器件
3.有机光电材料与器件
二、荣誉与奖励
1.上海市研究生优秀成果奖(博士学位论文,2014)
2.上海市高校特聘教授(东方学者,2016)
3. 上海市青年拔尖人才(2016)
4. 上海市青年科技启明星计划(2017)
三、主要科研项目
1. 主持国家自然科学基金青年项目-基于3D碳纳米材料的全固态超级电容器的制备及性能研究(2016.1-2018.12)
2. 主持国家自然科学基金面上项目(2018.1-2021.12)
3. 主持上海市“东方学者计划”经费资助(2016.1-2018.12)
4. 主持 上海市“启明星计划”经费资助(2017.4-2020.3)
5. 主持上海市“青年拔尖人才计划”经费资助(2017.1-2019.12)
6. 同济大学“领航人才计划”专项启动经费(2014.12-2019.12)
四、学术成果
        近年来,在纳米能源材料与器件领域取得了优异的研究成果,尤其在可穿戴以及可拉伸性能量转换或储存器件领域形成了我们的特色。迄今,已发表SCI论文30余篇,以第一作者和通信作者发表18篇,影响因子大于10的12篇,包括5篇Angew. Chem. Int. Ed.、2篇Adv. Mater.、1篇Nano Lett.和1篇ACS Nano等国际知名期刊,多篇论文入选ESI高被引论文;由于在相关领域的系列研究成果,相继在Chem. Soc. Rev.、Mater. Today、Nano Today等期刊发表专题综述;申请中国发明专利8项,已授权5项,技术转让1项。
专著
1. H. Peng, Q. Li, T. Chen. Industrial Applications of Carbon nanotubes.  Elsevier. 2016. (共同主编).
2. Y. Yao, N. Li, T. Lv, T. Chen*.Carbon Nanotube Fibers for Wearable Devices. Chapter 12 (in press);  H. Peng, Q. Li, T. Chen (Ed.). Industrial Applications of Carbon nanotubes.  Elsevier. 2016.
已发表论文:
2018
40.  Lv T., Liu M., Zhu D., Gan L.,* Chen T.* Nanocarbon–Based Materials for Flexible All–Solid–State Supercapacitors. Adv. Mater. 2018, Accepted.
39. Zhu Y., Li N., (Equal Contribution) Lv T.,  Yao Y.,  Peng H., Shi J.* Cao, S. * and  Chen T.*. Journal of Materials Chemistry A, 2017, DOI: 10.1039/C7TA09154K.   
2017
38. Li H., Lv T., Li N., Yao Y., Liu K., Chen T.* Ultraflexible and tailorable all–solid–state supercapacitors by using polyacrylamide-based hydrogel electrolyte with highly ionic conductivity. Nanoscale, 2017, 9, 18474-18481.
37. Li N.,  Lv T.,(Equal Contribution) Yao Y., Li H., Liu K., Chen T.* Compact graphene/MoS2              composite films for highly flexible and stretchable all-solid-state                           supercapacitors. J. Mater. Chem. A, 2017, 5, 3267-3273. (Hot Paper)
2016
36. Lv T., Yao Y., Li N., Chen T.* Highly Stretchable Supercapacitors Based on Aligned Carbon Nanotube/Molybdenum Disulphide Composites. Angew. Chem. Int. Ed. 2016, 55, 9191–9195.
35. Lv T., Yao Y., Li N., Chen T.* Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes. Nano Today 2016, 11, 644-660. (Invited review)
34. Chen T., Dai L. Flexible and wearable wire-shaped microsupercapacitors based on highly aligned titania and carbon nanotubes. Energy Storage Materials 2016, 2, 21–26.
2015
33. Chen T., Dai L. Macroscopic Graphene Fibers Directly Assembled from CVD Grown Fiber-Shaped Hollow Graphene Tubes, Angew. Chem. Int. Ed., 2015, 54, 14947-14950.
32. Chen T., Hao R., Peng H., Dai L. High–Performance, Stretchable, Wire–Shaped Supercapacitors. Angew. Chem. Int. Ed. 2015, 54, 618–622.
31. Chen Y., Chen T., Dai L. Layer-by-Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells. Adv. Mater. 2015, 27, 1053-1059.
2014
30. Chen T., Xue Y., Roy A. K., Dai L. Transparent and stretchable high–performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 2014, 8, 1039–1042.
29. Chen T., Durstock M., Peng H., Dai L. High–performance transparent and stretchable all–solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports 2014, 4, 3612–3618.
28. Chen T., Dai L. Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. A 2014, 2, 10756–10775.
27. Fan X., Chen T., Dai L. Graphene networks for high-performance flexible and transparent supercapacitors. RSC Adv., 2014, 4, 36996–37002.
2013
26. Chen T., Qiu L., Yang Z., Peng H. Novel solar cells in a wire format. Chem. Soc. Rev., 2013, 42, 5031–5041.
25. Chen T., Cai Z., Qiu L., Li H., Ren J., Lin H., Yang Z., Sun X., H. Peng. Synthesis of aligned carbon nanotube composite fibers with high performance by electrochemical deposition. J. Mater. Chem. A, 2013, 1, 2211–2216.
24. Chen T., Yang Z., Peng H. Integrated devices to simultaneously realize energy conversion and storage. ChemPhysChem 2013, 14, 1777–1782.
23. Chen T., Dai L. Carbon nanomaterials for high–performance supercapacitors. Materials Today. 2013, 16, 272–280.
22. Sun X., Chen T., Yang Z., Peng H. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013, 46, 539–549.
21. Yang Z., Sun H., Chen T., Qiu L., Luo Y., Peng, H. Photovoltaic Wire Derived from Graphene Composite Fiber. Angew. Chem. Int. Ed. 2013, 52, 7545–7548.
20. Yang Z., Chen T., He R., Li H., Lin H., Li L., Zou G., Jia Q., Peng H. A novel carbon nanotube/polymer composite film for electrode of organic solar cell. Polym. Chem. 2013, 1, 1680–1684.
2012
19. Chen T., Qiu L., Yang Z., Cai Z., Ren J., Li H., Lin H., Sun X., H. Peng. An integrated energy wire for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed., 2012, 51, 11977–11980.
18. Chen T., Qiu L., Yang Z., Wang Z.S., Peng H. Intertwined aligned carbon nanotube fibers based dye–sensitized solar cells. Nano Letters 2012, 12, 2568–2572.
17. Chen T., Qiu L., Yang Z., Kia H. G., Peng H. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires. Adv. Mater. 2012, 24, 4623–4628.
16. Chen T., Qiu L., Li H., Peng H. Polymer photovoltaic wires based on aligned carbon nanotube fibers. J. Mater. Chem. 2012, 22, 23655.
15. Cai F., Chen T., Peng H. All carbon nanotube fiber electrode–based dye–sensitized photovoltaic wire. J. Mater. Chem. 2012, 22, 14856–14860.
14. Sun X., Qiu L., Cai Z., Meng Z., Chen T., Lu Y., Peng H. Hierarchically tunable helical assembly of achiral porphyrin-incorporated alkoxysilane.Adv. Mater.2012, 24, 2906-2910.
13. Guo W., Liu C., Zhao F., Sun X., Yang Z., Chen, T., Chen X., Qiu L., Hu X., Peng H. A novel electromechanical actuation of carbon nanotube fiber.Adv. Mater.2012, 24, 5379-5384.
12. Huang S., Yang Z., Zhang L., He R., Chen T., Cai Z., Luo Y., Lin H., Cao H., Zhu X., Peng H.. A novel fabrication of well distributed and aligned carbon nanotube film electrode for dye-sensitized solar cell.J. Mater. Chem. 2012, 22, 16833-16838.
11. Huang S., Lin H., Qiu L., Zhang L., Cai Z., Chen T., Yang Z., Yang S., Peng H. Perpendicularly aligned carbon nanotube/olefin composite films for the preparation of graphene nanomaterials.J. Mater. Chem.2012, 22, 16209-16213.
2011
10. Chen T., Wang S., Yang Z., Feng Q., Sun X., Li L., Wang Z., Peng H. Flexible, light–weight, ultrastrong, and semiconductive carbon nanotube fiber for highly efficient novel solar cell. Angew. Chem. Int. Ed. 2011, 50, 1815–1819.
9. Chen T., Cai Z., Yang Z., Li L., Sun X., Huang T., Yu A., Kia H. G., Peng H. Nitrogen–doped carbon nanotube composite fiber with a core–sheath structure for novel electrode. Adv. Mater. 2011, 23, 4620–4625.
8. Yang Z., Chen T., He R., Guan G., Li H., Peng H. Aligned carbon nanotube sheet for electrode of organic solar cell. Adv. Mater. 2011, 23, 5436–5439.
7. Li L., Zhang L., Ren J., Zhang H., Sun X., Li H., Chen T., Peng H. Intriguing hybrid nanotubes with tunable structures. Chem. Phys. Lett. 2011, 516, 204-207.
6. Huang S., Li L., Yang Z., Zhang L., Saiyin H., Chen T., Peng H.. A new and general fabrication of aligned carbon nanotube/polymer film for electrode application. Adv. Mater. 2011, 23, 4707-4710.
5. Li L., Yang Z., Gao H., Zhang H., Ren J., Sun X., Chen T., Kia H. G., Peng H. Vertically aligned and penetrated carbon nanotube/polymer composite film and promising electronic applications.Adv. Mater.2011, 23, 3730-3735.
2010
4. Sun X., Chen T., Huang S., Li L., Peng H. Chromatic polydiacetylene with novel sensitivity. Chem. Soc. Rev. 2010, 39, 4244–4257.
3. Sun X., Chen T., Huang S., Cai F., Chen X., Yang Z., Li L., Lu Y., Peng H. UV–induced chromatism of polydiacetylenic assemblies.J. Phys. Chem. B 2010,114, 2379–2383.
2. Wang Y., Xu S., Chen T., Guo H., Liu Q., Ye B., Zhang Z., He Z., Cao S.. Synthesis and preliminary photovoltaic behavior study of a soluble polyimide containing ruthenium complexes. Polym. Chem., 2010, 1, 1048–1055.
2009
1. Sun X., Chen T., Huang S., Cai F., Chen X., Yang Z., Lu Y., Peng H. Stimuli–sensitive assemblies of homopolymers".Langmuir2009, 25, 11980–11983.
发明专利
1、陈涛,吕甜,姚瑶,李宁,“一种基于有序碳纳米管复合膜的可拉伸电容器及其制备”,中国专利,申请号:201610539127.X。
2、彭慧胜,陈涛,蔡振波,“一种基于碳纳米管的核壳结构复合纤维及其制备方法和应用”,中国专利,专利号:ZL 201110217865.X(已授权并转让)。
3、彭慧胜,陈涛,丘龙斌,“一种高性能线状染料敏化太阳能电池的制备方法”,中国专利,专利号:ZL 201110409883.8(已授权)。
4、彭慧胜,王忠胜,陈涛,王书涛,“一种基于碳纳米管纤维的有机太阳能电池及其制备方法”,中国专利,专利号:ZL 2010 1 0504015.3(已授权)。
5、彭慧胜,仰志斌,陈涛,“以取向碳纳米管膜为对电极的染料敏化太阳能电池”,中国专利,专利号:ZL201110219731.1(已授权)。
6、彭慧胜,仰志斌,陈涛,“以碳纳米管/聚合物复合膜为对电极的染料敏化太阳能电池”,中国专利,专利号:ZL 201110219730.7(已授权)。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

6

主题

22

帖子

32

积分

新手上路

Rank: 1

积分
32
沙发
发表于 2018-12-16 14:22:39 | 只看该作者
报告题目:纳米碳基柔性能量转换和储存器件
报告人:陈涛研究员
报告时间:2018年12月9日(周日)10:00-11:30
报告地点:郑州大学材料馆207报告厅
报告人简介:
陈涛:男,1983年生,同济大学特聘研究员、博士生导师。2006年、2009年分别获郑州大学学士和硕士学位,2012年获复旦大学高分子化学与物理博士学位, 2012.9- 2014.12美国凯斯西储大学博士后研究工作,2014年12月加入同济大学。2016年被评为上海市高校特聘教授,2017年被评为上海市青年拔尖人才和上海市青年科技启明星。
近年来主要从事纳米碳基柔性能量转换和储存器件方面的研究工作,尤其在基于碳纳米管电极材料的柔性可穿戴太阳能电池及柔性全固态超级电容器方面取得了系列的研究成果。以第一或通讯作者在Angewandte Chemie International Edition、Advanced Materials、Nano Letters、ACS Nano、Advanced Science等国际知名期刊发表论文20余篇,其中7篇论文入选ESI高倍引论文;部分研究工作被NPG Nature Asia-Pacific、Materials Views China等进行专题报道,获被评为VIP论文、封面论文等;由于研究工作的系统性,相继受邀在Advanced Materials、Nano Today等期刊发表相关专题综述,共同主编英文专著《Industrial Applications of Carbon Nanotubes》由Elsevier出版社出版。目前,主持2项国家自然科学基金项目和3项省部级人才计划项目。
报告简介:
柔性、可穿戴电子器件的兴起及快速发展,亟需与之匹配的柔性及可穿戴能量器件(如太阳能电池、超级电容器等)。以碳纳米管、石墨烯为代表的纳米碳材料由于它们优异的电学、力学、化学稳定性等,被广泛用作能量转换或储存器件的电极材料,但是如何通过材料的结构设计实现高性能柔性能量器件的构筑仍面临较大挑战。本报告首先介绍我们在基于碳纳米管纤维的纤维状可编织太阳能电池及其集成器件的相关工作,包括其设计理念及性能优化策略等;然后介绍近几年来我们在纳米碳基柔性能量储存领域的工作进展。这些新型柔性、可穿戴能量转换或储存器件的发展,将极大地刺激并推动可穿戴设备的发展与应用。


材料科学与工程学院
2018年12月6日

回复 支持 反对

使用道具 举报

76

主题

99

帖子

107

积分

注册会员

Rank: 2

积分
107
板凳
发表于 2020-1-17 09:06:43 | 只看该作者
共价连接的石墨烯/碳纳米管中空纤维及织物的制备及应用研究
批准号        51973159       
学科分类        有机无机复合功能材料 ( E030905 )
项目负责人        陈涛       
依托单位        同济大学
资助金额        60.00万元       
项目类别        面上项目       
研究期限        2020 年 01 月 01 日 至2023 年 12 月 31 日

回复 支持 反对

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-30 01:34 , Processed in 0.115178 second(s), 38 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表