找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 493|回复: 0
打印 上一主题 下一主题

[材料资讯] 陈学元团队:Bi3+/Te4+共掺杂Cs2SnCl6微晶实现双带可调谐白光发射

[复制链接]

100

主题

142

帖子

274

积分

中级会员

Rank: 3Rank: 3

积分
274
跳转到指定楼层
楼主
发表于 2022-2-3 08:04:56 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
ns2电子组态离子掺杂金属卤化物因其优异的光学性能,在太阳能电池、LED照明显示和光电探测等领域受到了广泛关注。然而,目前对该类材料的发光来源普遍存在一个认识误区,往往错误地将其归属于自限激子发光。另外,在金属卤化物中实现高效、可调谐的白光发射仍是该领域的一个技术难题。
图1、基于Bi3+/Te4+共掺杂Cs2SnCl6微晶实现双带可调谐白光发射:晶体结构示意图、发射光谱、Bi3+的荧光寿命随温度变化关系曲线、Bi3+→Te4+能量传递示意图。
        近日,中科院福建物质结构研究所陈学元团队和福州大学于岩团队合作提出一种Bi3+/Te4+共掺杂策略,利用Bi3+→Te4+的高效能量传递,实现Cs2SnCl6空位有序型双钙钛矿微晶的双带可调谐白光发射(图1),其光致发光量子产率(PLQY)达68.3%,并通过变温高分辨光谱等手段提供充分可靠的证据证明其发光来源于Bi3+和Te4+离子sp→s2组态间的电子跃迁。
        团队通过对比分析不同浓度Bi3+和Te4+单掺Cs2SnCl6微晶的漫反射和激发光谱,明确指认出掺杂引起的吸收峰分别归属于Bi3+的A带(1S0 →3P1)和Bi3+ → Bi3+荷移跃迁(X带)吸收以及Te4+的A(1S0 →3P1)、B(1S0 →3P2)、C带(1S0 →1P1)吸收(图2),而且材料的光吸收和光发射过程与Cs2SnCl6基质无关。在紫外光激发下,Bi3+和Te4+分别表现出宽带蓝光(456nm)和黄光(565 nm)发射,其发光来源于Bi3+和Te4+的3P0,1 → 1S0跃迁,PLQY分别达到60.6%和84.6%。
图2、Cs2SnCl6: x%Bi3+微晶的(a)漫反射谱、(b)激发(λem = 456 nm)和发射(λex = 347 nm)光谱; Cs2SnCl6: x%Te4+微晶的(c)漫反射谱、(d)激发(λem = 565 nm)和发射(λex = 382 nm)光谱。
图3、(a) Cs2SnCl6: 1.1%Bi3+微晶的变温激发(λem = 456 nm)和发射(λex = 347 nm)光谱;(b) Cs2SnCl6: 5.6%Te4+微晶的变温激发(λem = 565 nm)和发射(λex = 382 nm)光谱;(c,d) Cs2SnCl6: 1.1%Bi3+的变温荧光衰减曲线(λem = 456 nm);(e)Bi3+的荧光寿命随温度变化关系及三能级模型;(f)Cs2SnCl6: 5.6%Te4+的变温荧光衰减曲线(λem = 565 nm)。
       进一步地,团队通过变温高分辨光谱分析获得Cs2SnCl6微晶中Bi3+和Te4+的热激活能分别为92.4和238.9 meV(图3a,b),Huang-Rhys因子分别达到30.1和25.2,表明较强的电声子相互作用。特别地,当温度从10 K升到300 K,Bi3+的荧光寿命从1.20 ms显著缩短到1.49 μs(图3c,d),这主要是由于Bi3+的3P0和3P1两个热耦合能级电子布居随温度变化引起。低温下,3P0 → 1S0自旋禁戒跃迁占主导,表现出ms寿命;随温度升高,3P1 → 1S0自旋-轨道允许跃迁权重增大,激发态寿命急剧缩短,因此常温下表现出μs寿命。通过经典的三能级模型拟合得到Bi3+的3P0和3P1能级间距(ΔE)为130 cm-1(图3e)。Te4+由于ΔE较小(< 80 cm-1),因此在10 K下也只观测到μs寿命(图3f)。相对Te4+,Bi3+的旋轨耦合作用更强、Jahn-Teller效应更弱,因此Bi3+比Te4+表现出更大的ΔE和更小的斯托克斯位移。
        在此基础上,团队通过Bi3+/Te4+共掺,并利用Bi3+→Te4+的高效(71.3%)能量传递实现了双带可调谐白光发射,其PLQY高达68.3%。该材料还具有良好的结构、空气、光和水稳定性,有望应用于白光LED荧光粉、光学防伪和温度传感。该研究对Bi3+和Te4+的激发态动力学提供了新的见解,不仅澄清了对ns2电子组态离子掺杂金属卤化物发光机理的认识误区,还提供了一种实现金属卤化物单一基质白光发射的普适方法。
        相关结果以研究论文形式发表于《德国应用化学》杂志(Angew. Chem. Int. Ed.2022, 61, e202116085, DOI: 10.1002/anie.202116085),并入选热点论文。论文的第一作者是福建物构所/福州大学2021级联培博士研究生张伟,通讯作者是中科院福建物构所郑伟研究员、陈学元研究员和福州大学材料学院李凌云副教授。该研究得到中科院创新国际团队、科技部国家重点研发专项和国家自然科学基金等项目支持。
       此前,陈学元团队在金属卤化物钙钛矿的控制合成、激发态动力学、光学性能及应用研究方面取得了一系列重要研究进展。例如,发展一种光诱导合成新方法,实现钙钛矿纳米晶及其复合结构的原位、实时限域合成(Nano Today 2021, 39, 101179);利用稀土敏化钙钛矿纳米晶,实现全光谱高效上转换/长余辉发光调控(Nat. Commun.2018, 9, 3462;Angew. Chem. Int. Ed.2019, 58, 6943);揭示Mn2+在零维Cs4PbCl6与三维CsPbCl3钙钛矿纳米晶显著不同的发光特点和激发态动力学(Adv. Sci.2020, 7, 2002210);采用Cd2+掺杂和表面钝化策略,研制出高效紫外发光的钙钛矿纳米晶(Angew. Chem. Int. Ed.2021, 60, 9693);通过Cu+掺杂提升自限激子态密度和辐射复合速率,实现Cs2(Ag/Na)InCl6双钙钛矿高效发光(Adv. Sci. 2022, 9, 2103724. DOI: 10.1002/advs.202103724)。
       文章链接:https://doi.org/10.1002/anie.202116085


        文章来源:福建物构所
       陈学元,男,籍贯福建建瓯,研究员,博士生导师。1993年毕业于中国科技大学材料科学与工程系,1998年获中科院福建物质结构研究所物理化学专业理学博士学位。2001-2005年在美国能源部阿贡国家实验室(Argonne National Laboratory)化学部从事博士后研究。2005年入选中国科学院"百人计划"回国工作。2013年获得国家杰出青年科学基金。入选国务院政府特殊津贴专家(2014),首批福建省科技创新领军人才(2014),科技部中青年科技创新领军人才(2014),国家“万人计划”科技创新领军人才(2016),福建省第五批引进高层次创业创新人才(2017)。近年来致力于发光材料电子结构与性能研究,在无机发光材料控制合成、电子结构、光学性能及应用取得重要进展,已在Nature Photonics, Nature Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater.等刊物发表SCI论文140多篇,被他人引用六千多次,15篇论文入选近十年化学、材料和物理领域ESI高被引频次论文(top 1%);出版《稀土纳米发光材料:从基础到生物应用》等Springer英文专著2部,专章6篇;申请国内外发明专利34项(授权19项)。系列研究成果分别入选年度 “中国光学重要成果” (2010,2011,2013,2014,2016)和 “中国稀土十大科技新闻”(2011,2014,2015,2016)。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-26 19:29 , Processed in 0.089299 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表