找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 511|回复: 0
打印 上一主题 下一主题

[材料资讯] 张一慧课题组提出一种高集成度柔性电子器件的层叠网格封装技术

[复制链接]

110

主题

147

帖子

233

积分

中级会员

Rank: 3Rank: 3

积分
233
跳转到指定楼层
楼主
发表于 2022-3-28 14:00:01 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
随着5G、大数据及万物互联技术的普及,柔性电子技术被赋予了更加广阔的应用空间。该领域一直以来的一个研究焦点是如何解决器件延展率和功能密度相互制约的难题。尤其是当柔性电子器件经过封装后,如何使其保持较高的延展率,是一个亟需克服的挑战。
       为提升无机柔性电子器件的延展率,前人提出了“岛-桥”导线、蛇形导线、分型导线及三维螺旋导线等设计策略,但是这些策略在增加器件延展性的同时,是以降低器件的功能密度为代价(覆盖率一般<80%)。前人也提出了将单层电路进行折叠和层叠,提高柔性电子器件功能密度。但是,在经过封装后,由于封装材料对导线变形的约束作用,为保持一定的延展率,其系统覆盖率在此前研究中最高达到~76%,很难进一步提高。
      清华大学张一慧课题组提出了一种小型化、高集成度柔性电子器件的层叠网格封装技术,实现了兼具高延展率、高覆盖率和类皮肤力学性能的无机柔性电子器件,解决了经封装的柔性电子器件的高延展率与高覆盖率之间的矛盾。该课题组将前期研制的仿生网状软材料作为封装材料,在降低对导线约束的同时,利用网格的孔隙容纳蛇形导线受拉伸之后的面外变形,以此提高延展性(图1);同时,将多个网格基底层叠,在不影响延展性的同时又提高了柔性电子器件的功能密度,实现了柔性电子器件的小型化集成与封装。
图1 网格封装策略及其与传统固体封装在延展率方面的对比
A.双层网格封装蛇形导线;B,C:网格封装与固体封装后最大弹性延展率对比及循环拉伸实验结果;D,E:一个基于叠层网格集成策略的五层柔性电子器件示例
         基于理论研究与实验测量,该课题组分析了蛇形导线-网格封装体系中关键几何参数对延展率的影响规律。揭示了网格封装下蛇形导线的变形模式,提出了“约束因子”概念以定量刻画器件的封装材料与蛇形导线的相互竞争关系对其延展率的影响(图2)。在此理论指导下,研制了在一个指甲大小(11×10mm2)面积上,集成包括微控制器等在内的42个电子元件、80多条的蛇形导线的小型化多功能无线柔性电子器件,覆盖率达到110%,且具有20%的双向延展率。在此基础上,展示了该器件作为无线鼠标等在人机交互方面的应用前景。
图2. 基于网格封装的柔性电子器件参数分析及应用实验
A,B:网格封装蛇形导线参数分析及变形机理;C:实现的小型化多功能无线柔性电子器件实物图;D:本研究与之前报道工作覆盖率和延展率对比;E:无线鼠标推箱子应用演示
        文章于3月16日在《科学·进展》(Science Advances)期刊以“基于层叠网格的高集成度小型化可拉伸电子器件”(Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials)为题发表,并被选为当期封面(图3)。
图3. 该研究被选为《科学进展》当期封面及实现的高集成度小型化柔性电子器件三维图
        清华大学张一慧教授是该文章的通讯作者。清华大学航院博士后宋洪烈、访问博士生罗国全(来自哈工大2017级)为文章的共同第一作者。清华大学航院2019级博士生籍梓垚、2016级博士生白柯、2016级博士生刘建星、2017级博士生程旭、2017级博士生庞文博、2019级博士生沈张明,以及航院博士后柏韧恒、薛兆国等参与了此项研究。该研究成果得到了国家自然科学基金委原创探索计划、基金委创新研究群体和青年科学基金等项目的资助。
       论文链接:https://www.science.org/doi/10.1126/sciadv.abm3785


      文章来源:清华大学
       张一慧,清华大学航天航空学院工程力学系副教授。2006年在南京航空航天大学飞行器设计与工程专业获学士学位,2011年在清华大学工程力学系获博士学位。2011年至2015年在美国西北大学土木与环境工程系先后担任Postdoctoral Fellow和Research Assistant Professor。2017年获得国家自然科学基金委优秀青年基金资助。他的主要研究兴趣包括力学引导的微尺度三维结构组装,柔性可延展电子器件,软质多孔材料等。至今已发表SCI论文70余篇,其中《Science》2篇,《Cell》1篇,《Nature》子刊10篇,《Science》子刊1篇,《PNAS》4篇,力学领域顶级期刊《JMPS》8篇,材料学权威期刊《Advanced Functional Materials》7篇,《ACS Nano》2篇。获《麻省理工学院技术评论》“全球35位35岁以下创新者”(2016)、香港求是科技基金会“求是杰出青年学者奖”(2016)、美国机械工程师协会最高论文奖梅尔维尔奖章Melville Medal(2017)、美国机械工程师协会应用力学部杰出论文奖Journal of Applied Mechanics Award(2017)、国际工程科学协会青年学者奖章(2018)等荣誉。

  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-29 09:39 , Processed in 0.086838 second(s), 40 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表