找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 191|回复: 0
打印 上一主题 下一主题

[材料资讯] 刘凯、张洪杰团队在发展蛋白动态化学键引导蛋白纤维高抗逆性和形态制动性方面取得进展

[复制链接]

24

主题

48

帖子

68

积分

注册会员

Rank: 2

积分
68
跳转到指定楼层
楼主
发表于 2023-10-2 08:34:58 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
结构蛋白纤维因其优异的力学和生物特性而受到广泛关注,如何在分子水平上对蛋白内部化学作用进行精细操纵以提升蛋白纤维的环境抗逆性和形态可调性对推动生物纤维特种应用具有重要的意义。
       9月2日,清华大学化学系刘凯、张洪杰等人在《自然通讯》(Nature Communications)上发表了题为“动态亚胺键化学驱动的蛋白纤维力学自恢复性”(Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry)的研究论文。他们通过合成生物学和化学组装调控相结合,建立了结构蛋白动态化学键引导纤维成型策略(图1),以人工设计合成的多氨基无序结构蛋白为模型,发展了动态亚胺键纤维化学制备技术,创建了高抗逆性和形态制动性的特种蛋白纤维,在极端环境下表现出优异的力学稳定性和抗逆能力,并可快速实现蛋白纤维力学自恢复性和刺激往复伸展-收缩制动性。
图1.以人工设计合成的多氨基无序结构蛋白为模型,发展动态亚胺键纤维化学制备技术,实现高性能蛋白纤维宏量制备
        在该体系中,通过动态亚胺键化学可快速大批量制备性能优异的蛋白纤维。在凝固浴中引入微量戊二醛有助于在无序结构蛋白域内形成动态亚胺键交联网络,为蛋白纤维的机械强度、抗逆性及形态制动性提供分子结构基础。除此之外,通过后拉伸处理有效提高蛋白分子在纤维内部的高度有序排列,进一步增强蛋白纤维的力学性能(图2)。力学测试表明,随着蛋白分子量从19kDa(K-36)增加到72kDa(K-144cys),蛋白纤维的抗拉强度随之增加,最终抗拉强度可达420MPa,杨氏模量高达5.5GPa,超过诸多人工合成蛋白纤维和聚合物纤维。这些结果表明,无序结构蛋白的高分子量和良好排列的内部分子结构是提高蛋白纤维机械性能的关键。
        研究人员发现,蛋白纤维表现出良好的力学性能可恢复性和力学性能长期稳定性(图3)。所有纤维经过不同酸性环境处理后,再利用中性水环境的浸泡和空气中干燥后,其力学性能可完美复原。这种力学可恢复性行为正是来源于蛋白内部引入的动态亚胺键的断裂和重组。有趣的是,蛋白纤维即使在极冷的条件下(液氮浸泡12小时)也表现出异常的力学稳定性。推测这是由于亚胺交联网络可以防止纤维中低温下冰团的接近或形成,避免应力集中和开裂,从而保持蛋白纤维的稳定性。更重要的是,在8个月(甚至1年以上)后,蛋白纤维的力学性能仍基本保持不变,充分证实其良好的力学稳定性。此外,该蛋白纤维还表现出耐高温性。这种现象可能归因于纤维内部的亚胺交联网络在100°C到150°C的范围内在一定程度上维持蛋白系统的稳定性。
       研究人员进一步发现了原纺蛋白纤维和后拉伸蛋白纤维的不同湿度刺激形态响应行为(图4)。当与水接触时,研究人员观察到原纺蛋白纤维的自折叠和自伸展现象。对于一根长度为50毫米的典型原纺蛋白纤维,在水中延展到63毫米,并在脱水后恢复到其原始长度。基于此,研究人员设计了一种湿度响应式致动器,该致动器表现出非凡的往复伸展收缩运动行为。当纤维在30%湿度下脱水和在100%湿度下水合时,它可以在多个周期内可逆地进行形态伸展和收缩制动。然而,与原纺蛋白纤维不同的是,后拉伸蛋白纤维在接触水时会因熵的增加而收缩。因此后拉伸蛋白纤维束在受到水的刺激后迅速收缩,以破口的琼脂凝胶或猪肉为模型,证明了该类型蛋白纤维对肌肉动态修复和疲劳调节具有潜在的应用价值。
       综上所述,该团队通过发展蛋白分子工程和动态化学调控,展示了动态亚胺键化学可作为一种用于合理设计坚固耐用蛋白纤维的新型技术。与传统蛋白纤维较差的环境适应性相比,所构建蛋白纤维内亚胺键的可逆解离和重组特性使得该蛋白纤维具有优异的抗逆性、耐疲劳性、力学自修复性和形态可调性。特别是,蛋白纤维在极端环境下展现出优异的力学稳定性和可恢复性。同时,由于纤维内部的水合不均匀性和熵增特性,实现了蛋白纤维多功能自主驱动的运动模式。蛋白纤维出色的力学性能和低细胞毒性使其具有潜在的生物医学应用。总的来说,研究者的策略通过操纵氨基酸序列和在蛋白链之间引入动态亚胺键,实现了对结构蛋白分子内和分子间化学作用调控,从而实现了高机械性能和多样功能性,为推进高性能生物纤维在高技术领域应用提供了全新的技术支撑。
       该研究在清华大学化学系和清华大学稀土新材料教育部工程研究中心张洪杰院士指导下完成,清华大学化学系和清华大学稀土新材料教育部工程研究中心刘凯教授、浙江大学陈东教授和中国科学院大学苏娟娟副教授为论文共同通讯作者,华东师范大学孙静博士、中国科学院长春应用化学研究所何浩男博士和清华大学赵柯鲁博士为论文共同第一作者。该研究得到国家自然科学基金、国家重点研发计划、中国科学院人才基金等项目的支持。
       论文链接:https://www.nature.com/articles/s41467-023-41084-1
       文章来源:清华大学
         刘凯,清华大学长聘副教授。2007年本科毕业于聊城大学化学化工学院,2010年在中科院长春应化所稀土资源利用国家重点实验获得硕士学位,2010年‐2014年在荷兰格罗宁根大学Zernike(诺贝尔物理学奖获得者)先进材料研究所攻读博士学位,其后继续在该研究所从事博士后研究工作。目前主要从事生物材料(核酸、多肽及蛋白复合物)的光、电、磁、力学等功能化研究,在生物液晶、生物光电子器件、生物力学及生物仿生等领域开展了多项工作。迄今共发表SCI研究论文47篇,其中以第一作者已在Nat. Commun. ,PNAS,JACS,Adv. Mater.,Chem. Eur. J., J. Mater. Chem.等期刊发表16篇。文章总他引1400余次,H‐index24,多篇论文被选为热点文章,以及封面,卷首插图等予以亮点报道。曾获得荷兰优秀博士论文并授予cum laude 荣誉、国家优秀自费留学生奖、德国朗盛人才奖等。
        张洪杰,任中国科学院长春应用化学研究所学术委员会主任,中国稀土行业协会理事长,基金委重大项目负责人。1997年获国家杰出青年基金,1998年获香港求是基金会杰出青年学者奖,2001年入选中科院百人计划,2009年入选国家基金委创新群体学术带头人。2013年担任973项目首席科学家。2013年当选中科院院士,2015年当选发展中科学院院士。发表SCI收录论文500多篇,Google Scholar 他引35000多次;主办国内外学术会议60多次,国内外大会和邀请报告100多次;10种国内外权威期刊的主编、副主编、编委或顾问编委;已授权发明专利72项;以第一完成人获2010年国家自然科学二等奖、2015年中科院杰出科技成就奖、2015年吉林科学技术特殊贡献奖、2013年吉林省技术发明一等奖、2012吉林省政府创新创业人才奖、2007年吉林省科技进步一等奖。










  声明:本网部分文章和图片来源于网络,发布的文章仅用于材料专业知识和市场资讯的交流与分享,不用于任何商业目的。任何个人或组织若对文章版权或其内容的真实性、准确性存有疑义,请第一时间联系我们,我们将及时进行处理。

本帖被以下淘专辑推荐:

分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享 分享淘帖1
回复

使用道具 举报

小黑屋|手机版|Archiver|版权声明|一起进步网 ( 京ICP备14007691号-1

GMT+8, 2024-4-28 23:06 , Processed in 0.089185 second(s), 41 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表